hermanshid commited on
Commit
8c7cb45
·
1 Parent(s): a62b44c

add readme

Browse files
Files changed (4) hide show
  1. README.md +69 -1
  2. config.json +1 -5
  3. preprocessor_config.json +1 -1
  4. thumbnail.jpg +0 -0
README.md CHANGED
@@ -1,3 +1,71 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - ultralyticsplus
4
+ - yolov5
5
+ - ultralytics
6
+ - yolo
7
+ - vision
8
+ - object-detection
9
+ - pytorch
10
+ - awesome-yolov8-models
11
+ - indonesia
12
+ - aksara
13
+ - aksarajawa
14
+
15
+ model-index:
16
+ - name: hermanshid/yolo-aksara-jawa
17
+ results:
18
+ - task:
19
+ type: object-detection
20
+
21
+ metrics:
22
+ - type: precision # since [email protected] is not available on hf.co/metrics
23
+ value: 0.995 # min: 0.0 - max: 1.0
24
+ name: [email protected](box)
25
  ---
26
+
27
+ # YOLOv5 for Aksara Jawa
28
+
29
+ <div align="center">
30
+ <img width="640" alt="hermanshid/aksarajawa" src="https://huggingface.co/hermanshid/yolo-aksara-jawa/resolve/main/thumbnail.jpg">
31
+ </div>
32
+
33
+ ## Dataset
34
+ Dataset available in [kaggle](https://www.kaggle.com/datasets/hermansugiharto/aksara-jawa-yolo-v5-dataset)
35
+ ## Supported Labels
36
+ ```python
37
+ [
38
+ "ba", "ca", "da", "dha", "ga", "ha", "ja", "ka", "la", "ma",
39
+ "na", "nga", "nya", "pa", "ra", "sa", "ta", "tha", "wa", "ya"
40
+ ]
41
+ ```
42
+
43
+ ## How to use
44
+ - Install library
45
+
46
+ `pip install yolov5==7.0.5 torch`
47
+
48
+ ## Load model and perform prediction
49
+ ```python
50
+ import yolov5
51
+ from PIL import Image
52
+
53
+ model = yolov5.load(models_id)
54
+
55
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
56
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
57
+ model.overrides['max_det'] = 1000 # maximum number of detections per image
58
+
59
+ # set image
60
+ image = 'https://huggingface.co/spaces/hermanshid/aksara-jawa-space/raw/main/test_images/example1.jpg'
61
+
62
+ # perform inference
63
+ results = model.predict(image)
64
+
65
+ # observe results
66
+ print(results[0].boxes)
67
+ render = render_result(model=model, image=image, result=results[0])
68
+ render.show()
69
+
70
+ ```
71
+
config.json CHANGED
@@ -1,8 +1,4 @@
1
  {
2
  "input_size": 640,
3
- "task": "object-detection",
4
- "ultralyticsplus_version": "0.0.28",
5
- "ultralytics_version": "8.0.43",
6
- "model_type": "v8",
7
- "score_map50": 0.61355
8
  }
 
1
  {
2
  "input_size": 640,
3
+ "task": "object-detection"
 
 
 
 
4
  }
preprocessor_config.json CHANGED
@@ -14,5 +14,5 @@
14
  0.225
15
  ],
16
  "max_size": 1333,
17
- "size": 512
18
  }
 
14
  0.225
15
  ],
16
  "max_size": 1333,
17
+ "size": 640
18
  }
thumbnail.jpg ADDED