--- tags: - merge - mergekit - lazymergekit - cognitivecomputations/TinyDolphin-2.8-1.1b base_model: - cognitivecomputations/TinyDolphin-2.8-1.1b --- # tiny_ties tiny_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [cognitivecomputations/TinyDolphin-2.8-1.1b](https://huggingface.co./cognitivecomputations/TinyDolphin-2.8-1.1b) * [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) ## 🧩 Configuration ```yaml models: - model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T # no parameters necessary for base model - model: cognitivecomputations/TinyDolphin-2.8-1.1b parameters: density: 0.5 weight: 0.5 merge_method: ties base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "henryholloway/tiny_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```