Benedikt Fuchs
commited on
Commit
·
90f0ce2
1
Parent(s):
6a1a187
add model
Browse files- README.md +74 -1
- loss.tsv +11 -0
- model_args.bin +3 -0
- pytorch_model.bin +3 -0
- training.log +515 -0
README.md
CHANGED
@@ -1,3 +1,76 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
datasets:
|
8 |
+
- conll2003
|
9 |
+
widget:
|
10 |
+
- text: "George Washington went to Washington"
|
11 |
---
|
12 |
+
|
13 |
+
This is a very small model I use for testing my [ner eval dashboard](https://github.com/helpmefindaname/ner-eval-dashboard)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
F1-Score: **48,73** (corrected CoNLL-03)
|
18 |
+
|
19 |
+
Predicts 4 tags:
|
20 |
+
|
21 |
+
| **tag** | **meaning** |
|
22 |
+
|---------------------------------|-----------|
|
23 |
+
| PER | person name |
|
24 |
+
| LOC | location name |
|
25 |
+
| ORG | organization name |
|
26 |
+
| MISC | other name |
|
27 |
+
|
28 |
+
Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/).
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
### Demo: How to use in Flair
|
33 |
+
|
34 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
35 |
+
|
36 |
+
```python
|
37 |
+
from flair.data import Sentence
|
38 |
+
from flair.models import SequenceTagger
|
39 |
+
# load tagger
|
40 |
+
tagger = SequenceTagger.load("flair/ner-english-large")
|
41 |
+
# make example sentence
|
42 |
+
sentence = Sentence("George Washington went to Washington")
|
43 |
+
# predict NER tags
|
44 |
+
tagger.predict(sentence)
|
45 |
+
# print sentence
|
46 |
+
print(sentence)
|
47 |
+
# print predicted NER spans
|
48 |
+
print('The following NER tags are found:')
|
49 |
+
# iterate over entities and print
|
50 |
+
for entity in sentence.get_spans('ner'):
|
51 |
+
print(entity)
|
52 |
+
```
|
53 |
+
|
54 |
+
This yields the following output:
|
55 |
+
```
|
56 |
+
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
|
57 |
+
Span [5]: "Washington" [− Labels: LOC (1.0)]
|
58 |
+
```
|
59 |
+
|
60 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*".
|
61 |
+
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
### Training: Script to train this model
|
66 |
+
|
67 |
+
The following command was used to train this model:
|
68 |
+
where `examples\ner\run_ner.py` refers to [this script](https://github.com/flairNLP/flair/blob/master/examples/ner/run_ner.py)
|
69 |
+
|
70 |
+
```
|
71 |
+
python examples\ner\run_ner.py --model_name_or_path hf-internal-testing/tiny-random-bert --dataset_name CONLL_03 --learning_rate 0.002 --mini_batch_chunk_size 1024 --batch_size 64 --num_epochs 100
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
---
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:44:02 4 0.0001 0.5328251830571181 0.08702843636274338 0.8993 0.9091 0.9042 0.8614
|
3 |
+
2 23:47:24 4 0.0000 0.1937733137503905 0.06405811011791229 0.9344 0.9377 0.9361 0.9075
|
4 |
+
3 23:51:01 4 0.0000 0.16199104815067825 0.06513667851686478 0.9462 0.9463 0.9462 0.9207
|
5 |
+
4 23:54:37 4 0.0000 0.15143144882149487 0.0851067453622818 0.9446 0.9443 0.9445 0.9183
|
6 |
+
5 23:58:11 4 0.0000 0.14078483339379705 0.07939312607049942 0.9478 0.9527 0.9502 0.9253
|
7 |
+
6 00:01:40 4 0.0000 0.1396117310001689 0.08579559624195099 0.9455 0.9539 0.9497 0.9269
|
8 |
+
7 00:05:08 4 0.0000 0.1330616688582298 0.09259101003408432 0.9488 0.9542 0.9515 0.9292
|
9 |
+
8 00:08:36 4 0.0000 0.13271965400214392 0.09469996392726898 0.9485 0.9524 0.9505 0.928
|
10 |
+
9 00:11:57 4 0.0000 0.1294400242274288 0.09501232951879501 0.9475 0.9534 0.9504 0.9272
|
11 |
+
10 00:15:27 4 0.0000 0.1298187901297082 0.09416753053665161 0.9488 0.9539 0.9513 0.9283
|
model_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9565db4d50e0dbef463f52b139b5a5974a8da3ef61c0c825f71958641df9c393
|
3 |
+
size 241
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:744952f8978643963cf3c1fb70cfb5ebfce5c5ad3ae24b56377fb6f20636b5d9
|
3 |
+
size 434073325
|
training.log
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-05-09 23:40:59,402 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-05-09 23:40:59,404 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(28996, 768, padding_idx=0)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(word_dropout): WordDropout(p=0.05)
|
311 |
+
(locked_dropout): LockedDropout(p=0.5)
|
312 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
313 |
+
(loss_function): CrossEntropyLoss()
|
314 |
+
)"
|
315 |
+
2022-05-09 23:40:59,408 ----------------------------------------------------------------------------------------------------
|
316 |
+
2022-05-09 23:40:59,408 Corpus: "Corpus: 14987 train + 3466 dev + 3684 test sentences"
|
317 |
+
2022-05-09 23:40:59,408 ----------------------------------------------------------------------------------------------------
|
318 |
+
2022-05-09 23:40:59,408 Parameters:
|
319 |
+
2022-05-09 23:40:59,408 - learning_rate: "0.000050"
|
320 |
+
2022-05-09 23:40:59,408 - mini_batch_size: "16"
|
321 |
+
2022-05-09 23:40:59,408 - patience: "3"
|
322 |
+
2022-05-09 23:40:59,409 - anneal_factor: "0.5"
|
323 |
+
2022-05-09 23:40:59,409 - max_epochs: "10"
|
324 |
+
2022-05-09 23:40:59,409 - shuffle: "True"
|
325 |
+
2022-05-09 23:40:59,409 - train_with_dev: "False"
|
326 |
+
2022-05-09 23:40:59,409 - batch_growth_annealing: "False"
|
327 |
+
2022-05-09 23:40:59,409 ----------------------------------------------------------------------------------------------------
|
328 |
+
2022-05-09 23:40:59,409 Model training base path: "resources\taggers\ner"
|
329 |
+
2022-05-09 23:40:59,409 ----------------------------------------------------------------------------------------------------
|
330 |
+
2022-05-09 23:40:59,409 Device: cuda:0
|
331 |
+
2022-05-09 23:40:59,410 ----------------------------------------------------------------------------------------------------
|
332 |
+
2022-05-09 23:40:59,410 Embeddings storage mode: none
|
333 |
+
2022-05-09 23:40:59,410 ----------------------------------------------------------------------------------------------------
|
334 |
+
2022-05-09 23:41:15,820 epoch 1 - iter 93/937 - loss 2.04152065 - samples/sec: 90.73 - lr: 0.000005
|
335 |
+
2022-05-09 23:41:31,406 epoch 1 - iter 186/937 - loss 1.48569545 - samples/sec: 95.52 - lr: 0.000010
|
336 |
+
2022-05-09 23:41:46,603 epoch 1 - iter 279/937 - loss 1.18645416 - samples/sec: 97.92 - lr: 0.000015
|
337 |
+
2022-05-09 23:42:01,525 epoch 1 - iter 372/937 - loss 1.01481547 - samples/sec: 99.74 - lr: 0.000020
|
338 |
+
2022-05-09 23:42:16,869 epoch 1 - iter 465/937 - loss 0.86894115 - samples/sec: 97.01 - lr: 0.000025
|
339 |
+
2022-05-09 23:42:32,505 epoch 1 - iter 558/937 - loss 0.75848951 - samples/sec: 95.21 - lr: 0.000030
|
340 |
+
2022-05-09 23:42:48,889 epoch 1 - iter 651/937 - loss 0.68004440 - samples/sec: 90.87 - lr: 0.000035
|
341 |
+
2022-05-09 23:43:05,305 epoch 1 - iter 744/937 - loss 0.62468227 - samples/sec: 90.67 - lr: 0.000040
|
342 |
+
2022-05-09 23:43:22,552 epoch 1 - iter 837/937 - loss 0.57575609 - samples/sec: 86.33 - lr: 0.000045
|
343 |
+
2022-05-09 23:43:40,505 epoch 1 - iter 930/937 - loss 0.53467358 - samples/sec: 82.91 - lr: 0.000050
|
344 |
+
2022-05-09 23:43:41,669 ----------------------------------------------------------------------------------------------------
|
345 |
+
2022-05-09 23:43:41,670 EPOCH 1 done: loss 0.5328 - lr 0.000050
|
346 |
+
2022-05-09 23:44:01,944 Evaluating as a multi-label problem: False
|
347 |
+
2022-05-09 23:44:01,998 DEV : loss 0.08702843636274338 - f1-score (micro avg) 0.9042
|
348 |
+
2022-05-09 23:44:02,088 BAD EPOCHS (no improvement): 4
|
349 |
+
2022-05-09 23:44:02,089 ----------------------------------------------------------------------------------------------------
|
350 |
+
2022-05-09 23:44:19,412 epoch 2 - iter 93/937 - loss 0.21171218 - samples/sec: 85.94 - lr: 0.000049
|
351 |
+
2022-05-09 23:44:39,339 epoch 2 - iter 186/937 - loss 0.20667256 - samples/sec: 74.71 - lr: 0.000049
|
352 |
+
2022-05-09 23:44:57,325 epoch 2 - iter 279/937 - loss 0.20359662 - samples/sec: 82.76 - lr: 0.000048
|
353 |
+
2022-05-09 23:45:15,903 epoch 2 - iter 372/937 - loss 0.20181902 - samples/sec: 80.11 - lr: 0.000048
|
354 |
+
2022-05-09 23:45:33,625 epoch 2 - iter 465/937 - loss 0.20239195 - samples/sec: 84.00 - lr: 0.000047
|
355 |
+
2022-05-09 23:45:51,983 epoch 2 - iter 558/937 - loss 0.20029145 - samples/sec: 81.07 - lr: 0.000047
|
356 |
+
2022-05-09 23:46:10,178 epoch 2 - iter 651/937 - loss 0.19802516 - samples/sec: 81.82 - lr: 0.000046
|
357 |
+
2022-05-09 23:46:27,567 epoch 2 - iter 744/937 - loss 0.19751023 - samples/sec: 85.60 - lr: 0.000046
|
358 |
+
2022-05-09 23:46:46,030 epoch 2 - iter 837/937 - loss 0.19578745 - samples/sec: 80.62 - lr: 0.000045
|
359 |
+
2022-05-09 23:47:03,838 epoch 2 - iter 930/937 - loss 0.19400286 - samples/sec: 83.60 - lr: 0.000044
|
360 |
+
2022-05-09 23:47:05,067 ----------------------------------------------------------------------------------------------------
|
361 |
+
2022-05-09 23:47:05,067 EPOCH 2 done: loss 0.1938 - lr 0.000044
|
362 |
+
2022-05-09 23:47:24,009 Evaluating as a multi-label problem: False
|
363 |
+
2022-05-09 23:47:24,058 DEV : loss 0.06405811011791229 - f1-score (micro avg) 0.9361
|
364 |
+
2022-05-09 23:47:24,143 BAD EPOCHS (no improvement): 4
|
365 |
+
2022-05-09 23:47:24,144 ----------------------------------------------------------------------------------------------------
|
366 |
+
2022-05-09 23:47:43,087 epoch 3 - iter 93/937 - loss 0.17145472 - samples/sec: 78.59 - lr: 0.000044
|
367 |
+
2022-05-09 23:48:02,729 epoch 3 - iter 186/937 - loss 0.16975910 - samples/sec: 75.78 - lr: 0.000043
|
368 |
+
2022-05-09 23:48:22,058 epoch 3 - iter 279/937 - loss 0.16698979 - samples/sec: 77.00 - lr: 0.000043
|
369 |
+
2022-05-09 23:48:42,011 epoch 3 - iter 372/937 - loss 0.16408423 - samples/sec: 74.60 - lr: 0.000042
|
370 |
+
2022-05-09 23:49:02,832 epoch 3 - iter 465/937 - loss 0.16405058 - samples/sec: 71.49 - lr: 0.000042
|
371 |
+
2022-05-09 23:49:24,164 epoch 3 - iter 558/937 - loss 0.16308247 - samples/sec: 69.79 - lr: 0.000041
|
372 |
+
2022-05-09 23:49:44,385 epoch 3 - iter 651/937 - loss 0.16211092 - samples/sec: 73.61 - lr: 0.000041
|
373 |
+
2022-05-09 23:50:05,176 epoch 3 - iter 744/937 - loss 0.16230919 - samples/sec: 71.59 - lr: 0.000040
|
374 |
+
2022-05-09 23:50:24,259 epoch 3 - iter 837/937 - loss 0.16223568 - samples/sec: 78.01 - lr: 0.000039
|
375 |
+
2022-05-09 23:50:42,702 epoch 3 - iter 930/937 - loss 0.16166223 - samples/sec: 80.71 - lr: 0.000039
|
376 |
+
2022-05-09 23:50:43,928 ----------------------------------------------------------------------------------------------------
|
377 |
+
2022-05-09 23:50:43,928 EPOCH 3 done: loss 0.1620 - lr 0.000039
|
378 |
+
2022-05-09 23:51:01,357 Evaluating as a multi-label problem: False
|
379 |
+
2022-05-09 23:51:01,410 DEV : loss 0.06513667851686478 - f1-score (micro avg) 0.9462
|
380 |
+
2022-05-09 23:51:01,494 BAD EPOCHS (no improvement): 4
|
381 |
+
2022-05-09 23:51:01,495 ----------------------------------------------------------------------------------------------------
|
382 |
+
2022-05-09 23:51:19,373 epoch 4 - iter 93/937 - loss 0.14617156 - samples/sec: 83.28 - lr: 0.000038
|
383 |
+
2022-05-09 23:51:39,862 epoch 4 - iter 186/937 - loss 0.15318927 - samples/sec: 72.64 - lr: 0.000038
|
384 |
+
2022-05-09 23:51:58,633 epoch 4 - iter 279/937 - loss 0.15311397 - samples/sec: 79.31 - lr: 0.000037
|
385 |
+
2022-05-09 23:52:17,782 epoch 4 - iter 372/937 - loss 0.15237270 - samples/sec: 77.73 - lr: 0.000037
|
386 |
+
2022-05-09 23:52:37,756 epoch 4 - iter 465/937 - loss 0.15252893 - samples/sec: 74.51 - lr: 0.000036
|
387 |
+
2022-05-09 23:52:57,040 epoch 4 - iter 558/937 - loss 0.15296964 - samples/sec: 77.19 - lr: 0.000036
|
388 |
+
2022-05-09 23:53:17,120 epoch 4 - iter 651/937 - loss 0.15177070 - samples/sec: 74.12 - lr: 0.000035
|
389 |
+
2022-05-09 23:53:36,789 epoch 4 - iter 744/937 - loss 0.15212670 - samples/sec: 75.67 - lr: 0.000034
|
390 |
+
2022-05-09 23:53:55,789 epoch 4 - iter 837/937 - loss 0.15188826 - samples/sec: 78.35 - lr: 0.000034
|
391 |
+
2022-05-09 23:54:15,078 epoch 4 - iter 930/937 - loss 0.15158585 - samples/sec: 77.16 - lr: 0.000033
|
392 |
+
2022-05-09 23:54:16,427 ----------------------------------------------------------------------------------------------------
|
393 |
+
2022-05-09 23:54:16,428 EPOCH 4 done: loss 0.1514 - lr 0.000033
|
394 |
+
2022-05-09 23:54:37,613 Evaluating as a multi-label problem: False
|
395 |
+
2022-05-09 23:54:37,666 DEV : loss 0.0851067453622818 - f1-score (micro avg) 0.9445
|
396 |
+
2022-05-09 23:54:37,758 BAD EPOCHS (no improvement): 4
|
397 |
+
2022-05-09 23:54:37,759 ----------------------------------------------------------------------------------------------------
|
398 |
+
2022-05-09 23:54:57,548 epoch 5 - iter 93/937 - loss 0.13786995 - samples/sec: 75.23 - lr: 0.000033
|
399 |
+
2022-05-09 23:55:17,232 epoch 5 - iter 186/937 - loss 0.14230070 - samples/sec: 75.62 - lr: 0.000032
|
400 |
+
2022-05-09 23:55:36,628 epoch 5 - iter 279/937 - loss 0.14258916 - samples/sec: 76.74 - lr: 0.000032
|
401 |
+
2022-05-09 23:55:56,340 epoch 5 - iter 372/937 - loss 0.14284130 - samples/sec: 75.52 - lr: 0.000031
|
402 |
+
2022-05-09 23:56:15,854 epoch 5 - iter 465/937 - loss 0.14169986 - samples/sec: 76.27 - lr: 0.000031
|
403 |
+
2022-05-09 23:56:34,410 epoch 5 - iter 558/937 - loss 0.14100332 - samples/sec: 80.21 - lr: 0.000030
|
404 |
+
2022-05-09 23:56:53,730 epoch 5 - iter 651/937 - loss 0.14139534 - samples/sec: 77.04 - lr: 0.000029
|
405 |
+
2022-05-09 23:57:12,846 epoch 5 - iter 744/937 - loss 0.14072810 - samples/sec: 77.88 - lr: 0.000029
|
406 |
+
2022-05-09 23:57:32,509 epoch 5 - iter 837/937 - loss 0.13972343 - samples/sec: 75.72 - lr: 0.000028
|
407 |
+
2022-05-09 23:57:51,218 epoch 5 - iter 930/937 - loss 0.14088149 - samples/sec: 79.56 - lr: 0.000028
|
408 |
+
2022-05-09 23:57:52,684 ----------------------------------------------------------------------------------------------------
|
409 |
+
2022-05-09 23:57:52,685 EPOCH 5 done: loss 0.1408 - lr 0.000028
|
410 |
+
2022-05-09 23:58:11,005 Evaluating as a multi-label problem: False
|
411 |
+
2022-05-09 23:58:11,060 DEV : loss 0.07939312607049942 - f1-score (micro avg) 0.9502
|
412 |
+
2022-05-09 23:58:11,147 BAD EPOCHS (no improvement): 4
|
413 |
+
2022-05-09 23:58:11,148 ----------------------------------------------------------------------------------------------------
|
414 |
+
2022-05-09 23:58:29,830 epoch 6 - iter 93/937 - loss 0.13587072 - samples/sec: 79.69 - lr: 0.000027
|
415 |
+
2022-05-09 23:58:48,422 epoch 6 - iter 186/937 - loss 0.13733201 - samples/sec: 80.06 - lr: 0.000027
|
416 |
+
2022-05-09 23:59:06,303 epoch 6 - iter 279/937 - loss 0.14061270 - samples/sec: 83.23 - lr: 0.000026
|
417 |
+
2022-05-09 23:59:24,586 epoch 6 - iter 372/937 - loss 0.13957657 - samples/sec: 81.44 - lr: 0.000026
|
418 |
+
2022-05-09 23:59:43,413 epoch 6 - iter 465/937 - loss 0.13980319 - samples/sec: 79.05 - lr: 0.000025
|
419 |
+
2022-05-10 00:00:01,871 epoch 6 - iter 558/937 - loss 0.13997926 - samples/sec: 80.63 - lr: 0.000024
|
420 |
+
2022-05-10 00:00:19,776 epoch 6 - iter 651/937 - loss 0.13934109 - samples/sec: 83.13 - lr: 0.000024
|
421 |
+
2022-05-10 00:00:38,921 epoch 6 - iter 744/937 - loss 0.13935470 - samples/sec: 77.75 - lr: 0.000023
|
422 |
+
2022-05-10 00:00:57,515 epoch 6 - iter 837/937 - loss 0.13944998 - samples/sec: 80.07 - lr: 0.000023
|
423 |
+
2022-05-10 00:01:15,467 epoch 6 - iter 930/937 - loss 0.13962343 - samples/sec: 82.92 - lr: 0.000022
|
424 |
+
2022-05-10 00:01:16,715 ----------------------------------------------------------------------------------------------------
|
425 |
+
2022-05-10 00:01:16,715 EPOCH 6 done: loss 0.1396 - lr 0.000022
|
426 |
+
2022-05-10 00:01:40,529 Evaluating as a multi-label problem: False
|
427 |
+
2022-05-10 00:01:40,579 DEV : loss 0.08579559624195099 - f1-score (micro avg) 0.9497
|
428 |
+
2022-05-10 00:01:40,666 BAD EPOCHS (no improvement): 4
|
429 |
+
2022-05-10 00:01:40,667 ----------------------------------------------------------------------------------------------------
|
430 |
+
2022-05-10 00:01:59,831 epoch 7 - iter 93/937 - loss 0.13534539 - samples/sec: 77.69 - lr: 0.000022
|
431 |
+
2022-05-10 00:02:18,246 epoch 7 - iter 186/937 - loss 0.13551684 - samples/sec: 80.83 - lr: 0.000021
|
432 |
+
2022-05-10 00:02:36,156 epoch 7 - iter 279/937 - loss 0.13584534 - samples/sec: 83.13 - lr: 0.000021
|
433 |
+
2022-05-10 00:02:55,093 epoch 7 - iter 372/937 - loss 0.13345388 - samples/sec: 78.60 - lr: 0.000020
|
434 |
+
2022-05-10 00:03:13,968 epoch 7 - iter 465/937 - loss 0.13357006 - samples/sec: 78.85 - lr: 0.000019
|
435 |
+
2022-05-10 00:03:33,833 epoch 7 - iter 558/937 - loss 0.13346607 - samples/sec: 74.94 - lr: 0.000019
|
436 |
+
2022-05-10 00:03:52,609 epoch 7 - iter 651/937 - loss 0.13318798 - samples/sec: 79.29 - lr: 0.000018
|
437 |
+
2022-05-10 00:04:11,143 epoch 7 - iter 744/937 - loss 0.13297235 - samples/sec: 80.32 - lr: 0.000018
|
438 |
+
2022-05-10 00:04:29,324 epoch 7 - iter 837/937 - loss 0.13294986 - samples/sec: 81.87 - lr: 0.000017
|
439 |
+
2022-05-10 00:04:48,227 epoch 7 - iter 930/937 - loss 0.13304211 - samples/sec: 78.74 - lr: 0.000017
|
440 |
+
2022-05-10 00:04:49,540 ----------------------------------------------------------------------------------------------------
|
441 |
+
2022-05-10 00:04:49,540 EPOCH 7 done: loss 0.1331 - lr 0.000017
|
442 |
+
2022-05-10 00:05:07,897 Evaluating as a multi-label problem: False
|
443 |
+
2022-05-10 00:05:07,956 DEV : loss 0.09259101003408432 - f1-score (micro avg) 0.9515
|
444 |
+
2022-05-10 00:05:08,048 BAD EPOCHS (no improvement): 4
|
445 |
+
2022-05-10 00:05:08,049 ----------------------------------------------------------------------------------------------------
|
446 |
+
2022-05-10 00:05:26,187 epoch 8 - iter 93/937 - loss 0.13287977 - samples/sec: 82.08 - lr: 0.000016
|
447 |
+
2022-05-10 00:05:46,292 epoch 8 - iter 186/937 - loss 0.13409706 - samples/sec: 74.04 - lr: 0.000016
|
448 |
+
2022-05-10 00:06:04,623 epoch 8 - iter 279/937 - loss 0.13270913 - samples/sec: 81.19 - lr: 0.000015
|
449 |
+
2022-05-10 00:06:23,601 epoch 8 - iter 372/937 - loss 0.13243728 - samples/sec: 78.43 - lr: 0.000014
|
450 |
+
2022-05-10 00:06:42,643 epoch 8 - iter 465/937 - loss 0.13287784 - samples/sec: 78.17 - lr: 0.000014
|
451 |
+
2022-05-10 00:07:02,185 epoch 8 - iter 558/937 - loss 0.13373988 - samples/sec: 76.17 - lr: 0.000013
|
452 |
+
2022-05-10 00:07:20,122 epoch 8 - iter 651/937 - loss 0.13402409 - samples/sec: 82.98 - lr: 0.000013
|
453 |
+
2022-05-10 00:07:39,327 epoch 8 - iter 744/937 - loss 0.13327101 - samples/sec: 77.50 - lr: 0.000012
|
454 |
+
2022-05-10 00:07:57,782 epoch 8 - iter 837/937 - loss 0.13355020 - samples/sec: 80.65 - lr: 0.000012
|
455 |
+
2022-05-10 00:08:16,804 epoch 8 - iter 930/937 - loss 0.13294805 - samples/sec: 78.25 - lr: 0.000011
|
456 |
+
2022-05-10 00:08:18,099 ----------------------------------------------------------------------------------------------------
|
457 |
+
2022-05-10 00:08:18,099 EPOCH 8 done: loss 0.1327 - lr 0.000011
|
458 |
+
2022-05-10 00:08:36,160 Evaluating as a multi-label problem: False
|
459 |
+
2022-05-10 00:08:36,214 DEV : loss 0.09469996392726898 - f1-score (micro avg) 0.9505
|
460 |
+
2022-05-10 00:08:36,300 BAD EPOCHS (no improvement): 4
|
461 |
+
2022-05-10 00:08:36,301 ----------------------------------------------------------------------------------------------------
|
462 |
+
2022-05-10 00:08:54,628 epoch 9 - iter 93/937 - loss 0.13256573 - samples/sec: 81.23 - lr: 0.000011
|
463 |
+
2022-05-10 00:09:13,253 epoch 9 - iter 186/937 - loss 0.13218317 - samples/sec: 79.94 - lr: 0.000010
|
464 |
+
2022-05-10 00:09:31,322 epoch 9 - iter 279/937 - loss 0.13240640 - samples/sec: 82.40 - lr: 0.000009
|
465 |
+
2022-05-10 00:09:49,199 epoch 9 - iter 372/937 - loss 0.13118429 - samples/sec: 83.28 - lr: 0.000009
|
466 |
+
2022-05-10 00:10:06,958 epoch 9 - iter 465/937 - loss 0.13128632 - samples/sec: 83.83 - lr: 0.000008
|
467 |
+
2022-05-10 00:10:25,134 epoch 9 - iter 558/937 - loss 0.12936261 - samples/sec: 81.90 - lr: 0.000008
|
468 |
+
2022-05-10 00:10:43,680 epoch 9 - iter 651/937 - loss 0.12973987 - samples/sec: 80.27 - lr: 0.000007
|
469 |
+
2022-05-10 00:11:01,678 epoch 9 - iter 744/937 - loss 0.12968500 - samples/sec: 82.71 - lr: 0.000007
|
470 |
+
2022-05-10 00:11:19,484 epoch 9 - iter 837/937 - loss 0.12985020 - samples/sec: 83.59 - lr: 0.000006
|
471 |
+
2022-05-10 00:11:37,340 epoch 9 - iter 930/937 - loss 0.12947938 - samples/sec: 83.36 - lr: 0.000006
|
472 |
+
2022-05-10 00:11:38,689 ----------------------------------------------------------------------------------------------------
|
473 |
+
2022-05-10 00:11:38,689 EPOCH 9 done: loss 0.1294 - lr 0.000006
|
474 |
+
2022-05-10 00:11:56,867 Evaluating as a multi-label problem: False
|
475 |
+
2022-05-10 00:11:56,918 DEV : loss 0.09501232951879501 - f1-score (micro avg) 0.9504
|
476 |
+
2022-05-10 00:11:57,003 BAD EPOCHS (no improvement): 4
|
477 |
+
2022-05-10 00:11:57,004 ----------------------------------------------------------------------------------------------------
|
478 |
+
2022-05-10 00:12:15,701 epoch 10 - iter 93/937 - loss 0.12882436 - samples/sec: 79.62 - lr: 0.000005
|
479 |
+
2022-05-10 00:12:34,784 epoch 10 - iter 186/937 - loss 0.12932802 - samples/sec: 78.02 - lr: 0.000004
|
480 |
+
2022-05-10 00:12:53,563 epoch 10 - iter 279/937 - loss 0.12935565 - samples/sec: 79.27 - lr: 0.000004
|
481 |
+
2022-05-10 00:13:12,428 epoch 10 - iter 372/937 - loss 0.13016513 - samples/sec: 78.91 - lr: 0.000003
|
482 |
+
2022-05-10 00:13:31,484 epoch 10 - iter 465/937 - loss 0.13001423 - samples/sec: 78.12 - lr: 0.000003
|
483 |
+
2022-05-10 00:13:50,860 epoch 10 - iter 558/937 - loss 0.12967414 - samples/sec: 76.82 - lr: 0.000002
|
484 |
+
2022-05-10 00:14:10,036 epoch 10 - iter 651/937 - loss 0.13044245 - samples/sec: 77.61 - lr: 0.000002
|
485 |
+
2022-05-10 00:14:29,046 epoch 10 - iter 744/937 - loss 0.13049319 - samples/sec: 78.30 - lr: 0.000001
|
486 |
+
2022-05-10 00:14:47,934 epoch 10 - iter 837/937 - loss 0.12970693 - samples/sec: 78.83 - lr: 0.000001
|
487 |
+
2022-05-10 00:15:06,881 epoch 10 - iter 930/937 - loss 0.12987301 - samples/sec: 78.57 - lr: 0.000000
|
488 |
+
2022-05-10 00:15:08,384 ----------------------------------------------------------------------------------------------------
|
489 |
+
2022-05-10 00:15:08,384 EPOCH 10 done: loss 0.1298 - lr 0.000000
|
490 |
+
2022-05-10 00:15:27,169 Evaluating as a multi-label problem: False
|
491 |
+
2022-05-10 00:15:27,221 DEV : loss 0.09416753053665161 - f1-score (micro avg) 0.9513
|
492 |
+
2022-05-10 00:15:27,303 BAD EPOCHS (no improvement): 4
|
493 |
+
2022-05-10 00:15:28,112 ----------------------------------------------------------------------------------------------------
|
494 |
+
2022-05-10 00:15:28,113 Testing using last state of model ...
|
495 |
+
2022-05-10 00:15:47,035 Evaluating as a multi-label problem: False
|
496 |
+
2022-05-10 00:15:47,087 0.9117 0.9212 0.9164 0.879
|
497 |
+
2022-05-10 00:15:47,087
|
498 |
+
Results:
|
499 |
+
- F-score (micro) 0.9164
|
500 |
+
- F-score (macro) 0.9024
|
501 |
+
- Accuracy 0.879
|
502 |
+
|
503 |
+
By class:
|
504 |
+
precision recall f1-score support
|
505 |
+
|
506 |
+
ORG 0.8893 0.9097 0.8994 1661
|
507 |
+
LOC 0.9301 0.9335 0.9318 1668
|
508 |
+
PER 0.9699 0.9579 0.9639 1617
|
509 |
+
MISC 0.7951 0.8348 0.8145 702
|
510 |
+
|
511 |
+
micro avg 0.9117 0.9212 0.9164 5648
|
512 |
+
macro avg 0.8961 0.9090 0.9024 5648
|
513 |
+
weighted avg 0.9127 0.9212 0.9169 5648
|
514 |
+
|
515 |
+
2022-05-10 00:15:47,088 ----------------------------------------------------------------------------------------------------
|