--- base_model: HuggingFaceTB/SmolLM-1.7B-Instruct datasets: - Magpie-Align/Magpie-Pro-300K-Filtered - bigcode/self-oss-instruct-sc2-exec-filter-50k - teknium/OpenHermes-2.5 - HuggingFaceTB/everyday-conversations-llama3.1-2k language: - en library_name: transformers license: apache-2.0 tags: - alignment-handbook - trl - sft - llama-cpp - gguf-my-repo --- # hellork/SmolLM-1.7B-Instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`HuggingFaceTB/SmolLM-1.7B-Instruct`](https://huggingface.co./HuggingFaceTB/SmolLM-1.7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./HuggingFaceTB/SmolLM-1.7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo hellork/SmolLM-1.7B-Instruct-Q5_K_M-GGUF --hf-file smollm-1.7b-instruct-q5_k_m-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo hellork/SmolLM-1.7B-Instruct-Q5_K_M-GGUF --hf-file smollm-1.7b-instruct-q5_k_m-imat.gguf -c 2048 ``` ### The Ship's Computer: [whisper_dictation](https://github.com/themanyone/whisper_dictation) Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM. ```bash git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git pip install -r whisper_dictation/requirements.txt git clone https://github.com/ggerganov/whisper.cpp cd whisper.cpp GGML_CUDA=1 make -j # assuming CUDA is available. see docs ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH) whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777 cd whisper_dictation ./whisper_cpp_client.py ``` See [the docs](https://github.com/themanyone/whisper_dictation) for tips on integrating with llama.cpp server, enabling the computer to talk back, draw AI images, carry out voice commands, and other features. ### Install Llama.cpp via git: Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo hellork/SmolLM-1.7B-Instruct-Q5_K_M-GGUF --hf-file smollm-1.7b-instruct-q5_k_m-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo hellork/SmolLM-1.7B-Instruct-Q5_K_M-GGUF --hf-file smollm-1.7b-instruct-q5_k_m-imat.gguf -c 2048 ```