--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-base-food101-jpqd-ov results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9060990099009901 --- # swin-base-food101-jpqd-ov It was compressed using [NNCF](https://github.com/openvinotoolkit/nncf) with [Optimum Intel](https://github.com/huggingface/optimum-intel#openvino) following the JPQD image classification example. This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.3396 - Accuracy: 0.9061 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.2162 | 0.42 | 500 | 2.1111 | 0.7967 | | 0.729 | 0.84 | 1000 | 0.5474 | 0.8773 | | 0.7536 | 1.27 | 1500 | 0.3844 | 0.8984 | | 0.4822 | 1.69 | 2000 | 0.3340 | 0.9043 | | 12.2559 | 2.11 | 2500 | 12.0128 | 0.9033 | | 48.7302 | 2.54 | 3000 | 48.3874 | 0.8681 | | 75.1831 | 2.96 | 3500 | 75.3200 | 0.7183 | | 93.5572 | 3.38 | 4000 | 93.4142 | 0.5939 | | 103.798 | 3.8 | 4500 | 103.4427 | 0.5634 | | 108.0993 | 4.23 | 5000 | 108.6461 | 0.5490 | | 110.1265 | 4.65 | 5500 | 109.3663 | 0.5636 | | 1.5584 | 5.07 | 6000 | 0.9255 | 0.8374 | | 1.0883 | 5.49 | 6500 | 0.5841 | 0.8758 | | 0.7024 | 5.92 | 7000 | 0.5055 | 0.8854 | | 0.9033 | 6.34 | 7500 | 0.4639 | 0.8901 | | 0.6901 | 6.76 | 8000 | 0.4360 | 0.8947 | | 0.6114 | 7.19 | 8500 | 0.4080 | 0.8978 | | 0.5102 | 7.61 | 9000 | 0.3911 | 0.9009 | | 0.7154 | 8.03 | 9500 | 0.3747 | 0.9027 | | 0.5621 | 8.45 | 10000 | 0.3622 | 0.9021 | | 0.5262 | 8.88 | 10500 | 0.3554 | 0.9041 | | 0.5442 | 9.3 | 11000 | 0.3462 | 0.9053 | | 0.5615 | 9.72 | 11500 | 0.3416 | 0.9061 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2