--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-squad-v1 results: [] --- # bert-base-uncased-squad-v1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the squad dataset. It was finetuned following the [Transformers Question Answering example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering#fine-tuning-bert-on-squad10): ``` python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ``` ***** eval metrics ***** epoch = 2.0 eval_exact_match = 81.3434 eval_f1 = 88.7002 eval_samples = 10784 ``` ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2