--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5227272727272727 - name: Recall type: recall value: 0.29842446709916587 - name: F1 type: f1 value: 0.3799410029498525 - name: Accuracy type: accuracy value: 0.9395493993416271 --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2758 - Precision: 0.5227 - Recall: 0.2984 - F1: 0.3799 - Accuracy: 0.9395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2952 | 0.5110 | 0.2159 | 0.3036 | 0.9366 | | No log | 2.0 | 426 | 0.2758 | 0.5227 | 0.2984 | 0.3799 | 0.9395 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3