File size: 19,262 Bytes
e033a29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
---
base_model: google-bert/bert-base-uncased
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:91585
- loss:TripletLoss
widget:
- source_sentence: Why do people say "God bless you"?
sentences:
- Will the humanity become extinct?
- Why do people sneeze?
- Why do they say "God bless you" when you sneeze?
- source_sentence: What clarinet mouthpieces are the best?
sentences:
- What is the name of a good web design company in Delhi?
- Which instrument should I learn?
- Which clarinet mouthpiece should I buy?
- source_sentence: How do l see who viewed my videos on Instagram?
sentences:
- What is the possibility of time travel becoming a reality?
- Why can't I view a live video I posted on Facebook?
- How can I see who viewed my video on Instagram but didn't like my video?
- source_sentence: How can I become more social if I am an introvert?
sentences:
- What tricks can introverts learn to become more social?
- Nobody answers my questions on Quora, why?
- How did you become an introvert?
- source_sentence: How did Halloween Originate? What country did it originate on?
sentences:
- What was Halloween like in the 1990s?
- In what country did Halloween originate?
- What are the weirdest/creepiest dreams you have ever had?
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: triplet
name: Triplet
dataset:
name: QQP nli dev
type: QQP-nli-dev
metrics:
- type: cosine_accuracy
value: 0.987814465408805
name: Cosine Accuracy
- type: dot_accuracy
value: 0.012382075471698114
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9874213836477987
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.987814465408805
name: Euclidean Accuracy
- type: max_accuracy
value: 0.987814465408805
name: Max Accuracy
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-triplets")
# Run inference
sentences = [
'How did Halloween Originate? What country did it originate on?',
'In what country did Halloween originate?',
'What was Halloween like in the 1990s?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `QQP-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9878 |
| dot_accuracy | 0.0124 |
| manhattan_accuracy | 0.9874 |
| euclidean_accuracy | 0.9878 |
| **max_accuracy** | **0.9878** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 91,585 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.02 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.68 tokens</li><li>max: 60 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| <code>How can I overcome a bad mood?</code> | <code>How do I break out of a bad mood?</code> | <code>The world around me seems so austere and gloomy because of my mood. It's depressing me considerably. What can I do?</code> |
| <code>What are symptoms of mild schizophrenia?</code> | <code>What are some symptoms of when you become schizophrenic?</code> | <code>Is confusion another symptom of being schizophrenic?</code> |
| <code>What are some ideas which transformed ordinary people into millionaires?</code> | <code>What are some things ordinary people know but millionaires don't?</code> | <code>What can billionaires do that millionaire cannot do?</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 5,088 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.96 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.8 tokens</li><li>max: 60 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------|:------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Why do I see the exact same questions in my feed all the time?</code> | <code>Why are too many questions repeating in my feed sometimes?</code> | <code>Why does this "question" keep showing up in the Unorganized Questions global_feed? (see description for screenshot)</code> |
| <code>Can we expect time travel to become a reality?</code> | <code>Can we time travel anyhow?</code> | <code>What do you hAve to say about time travel (I am not science student but I read it on net and its so exciting topic but still no clear idea that is it possible or it's just a rumour)?</code> |
| <code>Is it too late to start medical school at 32?</code> | <code>Is it too late to go to medical school at 24?</code> | <code>As a 14 year old girl who wants to go to medical school, should I work extremely hard and study a lot now to be ready for it? What should I do?</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | QQP-nli-dev_max_accuracy |
|:------:|:-----:|:-------------:|:------:|:------------------------:|
| 0 | 0 | - | - | 0.8783 |
| 0.1746 | 500 | 2.3079 | 0.8664 | 0.9581 |
| 0.3493 | 1000 | 0.9367 | 0.5027 | 0.9737 |
| 0.5239 | 1500 | 0.6747 | 0.4471 | 0.9743 |
| 0.6986 | 2000 | 0.5323 | 0.3740 | 0.9776 |
| 0.8732 | 2500 | 0.4765 | 0.3178 | 0.9825 |
| 1.0479 | 3000 | 0.4104 | 0.2809 | 0.9866 |
| 1.2225 | 3500 | 0.3266 | 0.2633 | 0.9870 |
| 1.3971 | 4000 | 0.2129 | 0.2566 | 0.9862 |
| 1.5718 | 4500 | 0.1559 | 0.2542 | 0.9858 |
| 1.7464 | 5000 | 0.1432 | 0.2482 | 0.9853 |
| 1.9211 | 5500 | 0.1361 | 0.2370 | 0.9845 |
| 2.0957 | 6000 | 0.1179 | 0.2102 | 0.9880 |
| 2.2703 | 6500 | 0.0921 | 0.2201 | 0.9870 |
| 2.4450 | 7000 | 0.0656 | 0.2075 | 0.9878 |
| 2.6196 | 7500 | 0.0497 | 0.2011 | 0.9876 |
| 2.7943 | 8000 | 0.0455 | 0.1960 | 0.9878 |
| 2.9689 | 8500 | 0.0422 | 0.1973 | 0.9872 |
| 3.1436 | 9000 | 0.0349 | 0.1863 | 0.9890 |
| 3.3182 | 9500 | 0.0319 | 0.1850 | 0.9882 |
| 3.4928 | 10000 | 0.02 | 0.1854 | 0.9882 |
| 3.6675 | 10500 | 0.0184 | 0.1849 | 0.9884 |
| 3.8421 | 11000 | 0.0178 | 0.1828 | 0.9878 |
### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |