--- base_model: google-bert/bert-base-uncased datasets: - stanfordnlp/snli language: - en library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:494430 - loss:SoftmaxLoss widget: - source_sentence: A person out front of a business with a woman statue holding a bottle. sentences: - A couple holds hands. - The young boy is upside down. - the man is baking some bread - source_sentence: A person is dressed up in a weird costume with a red tongue sticking out. sentences: - thhe man plays a tuba - Four siblings are climbing on a fake black bear. - the tongue is blue - source_sentence: A man on a train is talking on a cellphone. sentences: - A man is playing a flute on a bus. - The woman is sexy. - two cyclists racing - source_sentence: An elderly woman giving her daughter a hug. sentences: - There are two women hugging. - A man holds a flag on the street. - people are sitting on a red roofed bus going to a museum - source_sentence: A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed. sentences: - A pilot is sitting in his plain with his hands crossed - The boys are playing outside on a log. - Two men discuss their love lives. --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the [stanfordnlp/snli](https://huggingface.co./datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [stanfordnlp/snli](https://huggingface.co./datasets/stanfordnlp/snli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli") # Run inference sentences = [ 'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.', 'A pilot is sitting in his plain with his hands crossed', 'The boys are playing outside on a log.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### stanfordnlp/snli * Dataset: [stanfordnlp/snli](https://huggingface.co./datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co./datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) * Size: 494,430 training samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:------------------------------------------------------------------------------|:---------------------------------------|:---------------| | Two men, one in yellow, are on a wooden boat. | Two men swimming in water | 2 | | Two people sleep on a couch. | Two people are asleep. | 0 | | a little boy is learning to swim with the help of a float board. | The boy is crawling. | 2 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Evaluation Dataset #### stanfordnlp/snli * Dataset: [stanfordnlp/snli](https://huggingface.co./datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co./datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) * Size: 27,468 evaluation samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------| | A taxi cab driver looks stressed out in his car. | a taxi driver is stressed | 0 | | Two men do trick in a park. | The men only sat on the bench in the park, doing nothing. | 2 | | Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face. | One lady makes a shocked face at the camera as the photographer tells the women they are lost. | 1 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | |:------:|:-----:|:-------------:|:------:| | 0.1294 | 1000 | 0.9208 | 0.7448 | | 0.2589 | 2000 | 0.7095 | 0.6462 | | 0.3883 | 3000 | 0.6415 | 0.6199 | | 0.5177 | 4000 | 0.6125 | 0.5940 | | 0.6472 | 5000 | 0.5935 | 0.5672 | | 0.7766 | 6000 | 0.5748 | 0.5550 | | 0.9060 | 7000 | 0.5654 | 0.5506 | | 1.0355 | 8000 | 0.5524 | 0.5376 | | 1.1649 | 9000 | 0.5386 | 0.5319 | | 1.2943 | 10000 | 0.5192 | 0.5361 | | 1.4238 | 11000 | 0.4863 | 0.5304 | | 1.5532 | 12000 | 0.4687 | 0.5278 | | 1.6826 | 13000 | 0.4586 | 0.5305 | | 1.8121 | 14000 | 0.4474 | 0.5222 | | 1.9415 | 15000 | 0.4447 | 0.5237 | | 2.0709 | 16000 | 0.434 | 0.5172 | | 2.2004 | 17000 | 0.4243 | 0.5235 | | 2.3298 | 18000 | 0.398 | 0.5224 | | 2.4592 | 19000 | 0.3747 | 0.5344 | | 2.5887 | 20000 | 0.3669 | 0.5301 | | 2.7181 | 21000 | 0.3583 | 0.5406 | | 2.8475 | 22000 | 0.3496 | 0.5354 | | 2.9770 | 23000 | 0.3527 | 0.5324 | | 3.1064 | 24000 | 0.3419 | 0.5299 | | 3.2358 | 25000 | 0.3358 | 0.5456 | | 3.3653 | 26000 | 0.3096 | 0.5562 | | 3.4947 | 27000 | 0.2964 | 0.5644 | | 3.6241 | 28000 | 0.2998 | 0.5565 | | 3.7536 | 29000 | 0.2906 | 0.5590 | | 3.8830 | 30000 | 0.2923 | 0.5564 | ### Framework Versions - Python: 3.10.6 - Sentence Transformers: 3.0.1 - Transformers: 4.39.3 - PyTorch: 2.2.2+cu118 - Accelerate: 0.28.0 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```