--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: benchmark-finetuned-bert results: [] --- # benchmark-finetuned-bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4553 - Accuracy: 0.8267 - F1: 0.8270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.803 | 1.0 | 48 | 0.6463 | 0.6997 | 0.6460 | | 0.5508 | 2.0 | 96 | 0.5141 | 0.8042 | 0.8051 | | 0.4111 | 3.0 | 144 | 0.4553 | 0.8267 | 0.8270 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1