update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: distilBERT-finetuned-resumes-sections
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# distilBERT-finetuned-resumes-sections
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-cased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0487
|
21 |
+
- F1: 0.9512
|
22 |
+
- Roc Auc: 0.9729
|
23 |
+
- Accuracy: 0.9482
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
|
54 |
+
| 0.058 | 1.0 | 1083 | 0.0457 | 0.9186 | 0.9494 | 0.9020 |
|
55 |
+
| 0.0277 | 2.0 | 2166 | 0.0393 | 0.9327 | 0.9614 | 0.9251 |
|
56 |
+
| 0.0154 | 3.0 | 3249 | 0.0333 | 0.9425 | 0.9671 | 0.9367 |
|
57 |
+
| 0.0104 | 4.0 | 4332 | 0.0408 | 0.9357 | 0.9645 | 0.9293 |
|
58 |
+
| 0.0084 | 5.0 | 5415 | 0.0405 | 0.9376 | 0.9643 | 0.9298 |
|
59 |
+
| 0.0065 | 6.0 | 6498 | 0.0419 | 0.9439 | 0.9699 | 0.9385 |
|
60 |
+
| 0.0051 | 7.0 | 7581 | 0.0450 | 0.9412 | 0.9674 | 0.9376 |
|
61 |
+
| 0.0034 | 8.0 | 8664 | 0.0406 | 0.9433 | 0.9684 | 0.9372 |
|
62 |
+
| 0.0035 | 9.0 | 9747 | 0.0441 | 0.9403 | 0.9664 | 0.9358 |
|
63 |
+
| 0.0024 | 10.0 | 10830 | 0.0492 | 0.9419 | 0.9678 | 0.9367 |
|
64 |
+
| 0.0026 | 11.0 | 11913 | 0.0470 | 0.9468 | 0.9708 | 0.9436 |
|
65 |
+
| 0.0022 | 12.0 | 12996 | 0.0514 | 0.9424 | 0.9679 | 0.9395 |
|
66 |
+
| 0.0013 | 13.0 | 14079 | 0.0458 | 0.9478 | 0.9715 | 0.9441 |
|
67 |
+
| 0.0019 | 14.0 | 15162 | 0.0494 | 0.9477 | 0.9711 | 0.9450 |
|
68 |
+
| 0.0007 | 15.0 | 16245 | 0.0492 | 0.9496 | 0.9719 | 0.9464 |
|
69 |
+
| 0.0009 | 16.0 | 17328 | 0.0487 | 0.9512 | 0.9729 | 0.9482 |
|
70 |
+
| 0.001 | 17.0 | 18411 | 0.0510 | 0.9480 | 0.9711 | 0.9441 |
|
71 |
+
| 0.0006 | 18.0 | 19494 | 0.0532 | 0.9477 | 0.9709 | 0.9441 |
|
72 |
+
| 0.0007 | 19.0 | 20577 | 0.0511 | 0.9487 | 0.9720 | 0.9445 |
|
73 |
+
| 0.0005 | 20.0 | 21660 | 0.0522 | 0.9471 | 0.9710 | 0.9436 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.20.1
|
79 |
+
- Pytorch 1.12.0+cu113
|
80 |
+
- Datasets 2.3.2
|
81 |
+
- Tokenizers 0.12.1
|