File size: 764 Bytes
14d4d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import streamlit as st
from transformers import pipeline

# Load summarization model from Hugging Face
summarizer = pipeline("summarization", model="google/pegasus-xsum")

# Streamlit UI
def main():
    st.title("Text Summarization App")

    # User input
    user_input = st.text_area("Enter your text for summarization:")

    if st.button("Generate Summary"):
        if user_input:
            # Perform summarization
            summary = summarizer(user_input, max_length=150, min_length=50, length_penalty=2.0, num_beams=4)[0]['summary_text']

            # Display result
            st.write("Summary:")
            st.write(summary)
        else:
            st.warning("Please enter some text for summarization.")

if __name__ == "__main__":
    main()