File size: 3,932 Bytes
1087bfb
049db7f
 
20fe64e
049db7f
20fe64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087bfb
049db7f
 
 
2e59888
049db7f
 
 
 
 
 
 
 
 
 
20fe64e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
language:
- en
license: apache-2.0
library_name: transformers
datasets:
- Norquinal/claude_multiround_chat_30k
model-index:
- name: open-llama-3b-claude-30k
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 41.72
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=harborwater/open-llama-3b-claude-30k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 72.64
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=harborwater/open-llama-3b-claude-30k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.03
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=harborwater/open-llama-3b-claude-30k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 38.46
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=harborwater/open-llama-3b-claude-30k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.54
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=harborwater/open-llama-3b-claude-30k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 2.2
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=harborwater/open-llama-3b-claude-30k
      name: Open LLM Leaderboard
---

Trained on 3 epoch of the Norquinal's claude_multiround_chat_30k dataset.

note: this is another expeiment feel free to give it a try!

Prompt template:
```
### HUMAN:
{prompt}

### RESPONSE:
<leave a newline for the model to answer>
```

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_harborwater__open-llama-3b-claude-30k)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |40.93|
|AI2 Reasoning Challenge (25-Shot)|41.72|
|HellaSwag (10-Shot)              |72.64|
|MMLU (5-Shot)                    |24.03|
|TruthfulQA (0-shot)              |38.46|
|Winogrande (5-shot)              |66.54|
|GSM8k (5-shot)                   | 2.20|