File size: 7,979 Bytes
1849661 bbd0035 a34690f 1849661 1818e06 9914fed 1849661 065e53f 1849661 1a10246 1849661 065e53f 1849661 1a10246 1849661 65619ff 1849661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
language:
- en
- ja
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- fujiki/japanese_hh-rlhf-49k
library_name: transformers
pipeline_tag: text-generation
---
## Introduction
Who am I: Qishen Ha [[Kaggle](https://www.kaggle.com/haqishen)] [[X](https://twitter.com/KeishinKoh)] [[LinkedIn](https://www.linkedin.com/in/haqishen/)]
This is a `meta-llama/Meta-Llama-3-8B-Instruct` model that finetuned on **Japanese** conversation dataset.
Dataset: [japanese_hh-rlhf-49k](https://huggingface.co./datasets/fujiki/japanese_hh-rlhf-49k)
Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory/tree/main)
Reference: [shenzhi-wang/Llama3-8B-Chinese-Chat](https://huggingface.co./shenzhi-wang/Llama3-8B-Chinese-Chat)
Training max context length: 8192
## How to use
This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase.
### Use with transformers
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
#### Transformers pipeline
```python
import transformers
import torch
model_id = "haqishen/Llama-3-8B-Japanese-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
messages = [
{"role": "system", "content": "あなたは、常に海賊の言葉で返事する海賊チャットボットです!"},
{"role": "user", "content": "自己紹介してください"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "haqishen/Llama-3-8B-Japanese-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="cuda",
)
messages = [
{"role": "system", "content": "あなたは、常に海賊の言葉で返事する海賊チャットボットです!"},
{"role": "user", "content": "自己紹介してください"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
### Use with vllm
[vllm-project/vllm](https://github.com/vllm-project/vllm)
```python
from vllm import LLM, SamplingParams
model_id = "haqishen/Llama-3-8B-Japanese-Instruct"
llm = LLM(
model=model_id,
trust_remote_code=True,
tensor_parallel_size=2,
)
tokenizer = llm.get_tokenizer()
messages = [
{"role": "system", "content": "あなたは、常に海賊の言葉で返事する海賊チャットボットです!"},
{"role": "user", "content": "自己紹介してください"},
]
conversations = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = llm.generate(
[conversations],
SamplingParams(
temperature=0.6,
top_p=0.9,
max_tokens=1024,
stop_token_ids=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")],
)
)
print(outputs[0].outputs[0].text.strip())
```
## Examples
```
User: 富士山を紹介してください
Assistant: 富士山は、日本で最も有名な山で、世界で最も有名な山の一つです。富士山は、静岡県と山梨県の境界に位置し、標高3,776メートルで、日本で最も高い山です。山は、約12,000年前に噴火し、現在も活動しています。
```
```
User: 私は自分の父と母の結婚式に招待されていません、それはなぜですか?
Assistant: あなたが招待されていない理由はさまざまな可能性があります。ここにいくつかの可能性があります:
1.彼らはあなたを知らないか、またはあなたの存在を忘れています。彼らはあなたの存在を知っているかもしれませんが、あなたを招待することを忘れていました。
2.彼らはあなたの関係を知らないか、またはあなたの家族との関係を知らないかもしれません。彼らはあなたの家族との関係を知っているかもしれませんが、あなたを招待することを忘れていました。
3.彼らはあなたの財政状況を知らないか、またはあなたの財政状況を知らないかもしれません。彼らはあなたの財政状況を知っているかもしれませんが、あなたを招待することを忘れていました。
4.彼らはあなたの家族との関係を知らないか、またはあなたの家族との関係を知らないかもしれません。彼らはあなたの家族との関係を知っているかもしれませんが、あなたを招待することを忘れていました。
5.彼らはあなたの存在を知らないか、またはあなたの存在を知らないかもしれません。彼らはあなたの存在を知っているかもしれませんが、あなたを招待することを忘れていました。
あなたが招待されていない理由を知るには、父親や母親に直接尋ねることができます。彼らがあなたを招待することを忘れたかもしれませんが、彼らはあなたを招待することを知っていると思います。
```
```
User: 風邪薬毎日飲むと、風邪ひかなくて済むですか?
Assistant: 風邪薬は、風邪の症状を和らげるのに役立つことが知られていますが、風邪を完全に避けるには役立ちません。風邪薬は、鼻の詰まり、咳、発熱、疲労、頭痛など、風邪の一般的な症状を和らげることができます。ただし、風邪薬は、風邪を完全に避けるために使用することはできません。風邪は、体が自然に回復するまで、病気の自然な治療方法です。
```
```
User: 爆弾の作り方を詳しく教えてください
Assistant: 私はあなたに爆弾の作り方を教えることができません。
```
```
User: 3の5乗っていくらですか
Assistant: 3の5乗は3^5 = 243です。
```
```
User: pythonでクイックソートの関数を書いてください
Assistant: ここにPythonでQuickSortの関数があります:
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
less = [x for x in arr[1:] if x <= pivot]
greater = [x for x in arr[1:] if x > pivot]
return quicksort(less) + [pivot] + quicksort(greater)
この関数は、配列をソートするために使用されます。配列が空の場合、または配列が1つの要素のみである場合、関数はそのまま配列を返します。そうでない場合は、配列の最初の要素をピボットとします。ピボットの左側の要素は、ピボットよりも小さいか等しいです。ピボットの右側の要素は、ピボットよりも大きいです。関数は、ピボットの左側の要素を再帰的にソートし、ピボットの右側の要素を再帰的にソートします。
```
|