Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,139 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- oscar-corpus/OSCAR-2301
|
5 |
+
- allenai/nllb
|
6 |
+
- Helsinki-NLP/opus-100
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- da
|
10 |
+
- nl
|
11 |
+
- de
|
12 |
+
- is
|
13 |
+
- 'no'
|
14 |
+
- sc
|
15 |
+
- af
|
16 |
+
- ca
|
17 |
+
- ro
|
18 |
+
- gl
|
19 |
+
- it
|
20 |
+
- pt
|
21 |
+
- es
|
22 |
+
- bg
|
23 |
+
- mk
|
24 |
+
- sr
|
25 |
+
- uk
|
26 |
+
- ru
|
27 |
+
- id
|
28 |
+
- ms
|
29 |
+
- th
|
30 |
+
- vi
|
31 |
+
- mg
|
32 |
+
- fr
|
33 |
+
- hu
|
34 |
+
- el
|
35 |
+
- cs
|
36 |
+
- pl
|
37 |
+
- lt
|
38 |
+
- lv
|
39 |
+
- ka
|
40 |
+
- zh
|
41 |
+
- ja
|
42 |
+
- ko
|
43 |
+
- fi
|
44 |
+
- et
|
45 |
+
- gu
|
46 |
+
- hi
|
47 |
+
- mr
|
48 |
+
- ne
|
49 |
+
- ur
|
50 |
+
- az
|
51 |
+
- kk
|
52 |
+
- ky
|
53 |
+
- tr
|
54 |
+
- uz
|
55 |
+
- ar
|
56 |
+
- he
|
57 |
+
- fa
|
58 |
+
base_model:
|
59 |
+
- haoranxu/ALMA-13B-Pretrain
|
60 |
+
- meta-llama/Llama-2-13b-hf
|
61 |
+
---
|
62 |
+
|
63 |
+
|
64 |
+
X-ALMA builds upon [ALMA-R](https://arxiv.org/pdf/2401.08417) by expanding support from 6 to 50 languages. It utilizes a plug-and-play architecture with language-specific modules, complemented by a carefully designed training recipe. This release includes the **X-ALMA pre-trained base model**.
|
65 |
+
|
66 |
+
X-ALMA-13B-Pretrain is pre-trained on 50 languages: en,da,nl,de,is,no,sv,af,ca,ro,gl,it,pt,es,bg,mk,sr,uk,ru,id,ms,th,vi,mg,fr,hu,el,cs,pl,lt,lv,ka,zh,ja,ko,fi,et,gu,hi,mr,ne,ur,az,kk,ky,tr,uz,ar,he,fa.
|
67 |
+
|
68 |
+
All X-ALMA checkpoints are released at huggingface:
|
69 |
+
| Models | Model Link | Description |
|
70 |
+
|:-------------:|:---------------:|:---------------:|
|
71 |
+
| X-ALMA | [haoranxu/X-ALMA]([https://huggingface.co/haoranxu/ALMA-7B](https://huggingface.co/haoranxu/X-ALMA)) | X-ALMA model with all its modules |
|
72 |
+
| X-ALMA-13B-Pretrain | [haoranxu/X-ALMA-13B-Pretrain](https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain) | X-ALMA 13B multilingual pre-trained base model |
|
73 |
+
| X-ALMA-Group1 | [haoranxu/X-ALMA-13B-Group1](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) | X-ALMA group1 specific module and the merged model |
|
74 |
+
| X-ALMA-Group2 | [haoranxu/X-ALMA-13B-Group2](https://huggingface.co/haoranxu/X-ALMA-13B-Group2) | X-ALMA group2 specific module and the merged model |
|
75 |
+
| X-ALMA-Group3 | [haoranxu/X-ALMA-13B-Group3](https://huggingface.co/haoranxu/X-ALMA-13B-Group3) | X-ALMA group3 specific module and the merged model |
|
76 |
+
| X-ALMA-Group4 | [haoranxu/X-ALMA-13B-Group4](https://huggingface.co/haoranxu/X-ALMA-13B-Group4) | X-ALMA group4 specific module and the merged model |
|
77 |
+
| X-ALMA-Group5 | [haoranxu/X-ALMA-13B-Group5](https://huggingface.co/haoranxu/X-ALMA-13B-Group5) | X-ALMA group5 specific module and the merged model |
|
78 |
+
| X-ALMA-Group6 | [haoranxu/X-ALMA-13B-Group6](https://huggingface.co/haoranxu/X-ALMA-13B-Group6) | X-ALMA group6 specific module and the merged model |
|
79 |
+
| X-ALMA-Group7 | [haoranxu/X-ALMA-13B-Group7](https://huggingface.co/haoranxu/X-ALMA-13B-Group7) | X-ALMA group7 specific module and the merged model |
|
80 |
+
| X-ALMA-Group8 | [haoranxu/X-ALMA-13B-Group8](https://huggingface.co/haoranxu/X-ALMA-13B-Group8) | X-ALMA group8 specific module and the merged model |
|
81 |
+
|
82 |
+
## A quick start:
|
83 |
+
There are three ways to load X-ALMA for translation. An example of translating "我爱机器翻译。" into English (X-ALMA should also able to do multilingual open-ended QA).
|
84 |
+
|
85 |
+
**The first way**: loading the merged model where the language-specific module has been merged into the base model **(Recommended)**:
|
86 |
+
```
|
87 |
+
import torch
|
88 |
+
from transformers import AutoModelForCausalLM
|
89 |
+
from transformers import AutoTokenizer
|
90 |
+
from peft import PeftModel
|
91 |
+
|
92 |
+
GROUP2LANG = {
|
93 |
+
1: ["da", "nl", "de", "is", "no", "sv", "af"],
|
94 |
+
2: ["ca", "ro", "gl", "it", "pt", "es"],
|
95 |
+
3: ["bg", "mk", "sr", "uk", "ru"],
|
96 |
+
4: ["id", "ms", "th", "vi", "mg", "fr"],
|
97 |
+
5: ["hu", "el", "cs", "pl", "lt", "lv"],
|
98 |
+
6: ["ka", "zh", "ja", "ko", "fi", "et"],
|
99 |
+
7: ["gu", "hi", "mr", "ne", "ur"],
|
100 |
+
8: ["az", "kk", "ky", "tr", "uz", "ar", "he", "fa"],
|
101 |
+
}
|
102 |
+
LANG2GROUP = {lang: str(group) for group, langs in GROUP2LANG.items() for lang in langs}
|
103 |
+
group_id = LANG2GROUP["zh"]
|
104 |
+
|
105 |
+
model = AutoModelForCausalLM.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", torch_dtype=torch.float16, device_map="auto")
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left')
|
107 |
+
|
108 |
+
# Add the source sentence into the prompt template
|
109 |
+
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
|
110 |
+
|
111 |
+
# X-ALMA needs chat template but ALMA and ALMA-R don't need it.
|
112 |
+
chat_style_prompt = [{"role": "user", "content": prompt}]
|
113 |
+
prompt = tokenizer.apply_chat_template(chat_style_prompt, tokenize=False, add_generation_prompt=True)
|
114 |
+
|
115 |
+
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
|
116 |
+
|
117 |
+
# Translation
|
118 |
+
with torch.no_grad():
|
119 |
+
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
|
120 |
+
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
121 |
+
print(outputs)
|
122 |
+
```
|
123 |
+
|
124 |
+
**The second way**: loading the base model and language-specific module **(Recommended)**:
|
125 |
+
```
|
126 |
+
model = AutoModelForCausalLM.from_pretrained("haoranxu/X-ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
|
127 |
+
model = PeftModel.from_pretrained(model, f"haoranxu/X-ALMA-13B-Group{group_id}")
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left')
|
129 |
+
```
|
130 |
+
|
131 |
+
**The third way**: loading the base model with all language-specific modules like MoE: (Require large GPU memory)
|
132 |
+
```
|
133 |
+
from modeling_xalma import XALMAForCausalLM
|
134 |
+
model = XALMAForCausalLM.from_pretrained("haoranxu/X-ALMA", torch_dtype=torch.float16, device_map="auto")
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained("haoranxu/X-ALMA", padding_side='left')
|
136 |
+
|
137 |
+
# Add `lang="zh"`: specify the language to instruct the model on which group to use for the third loading method during generation.
|
138 |
+
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9, lang="zh")
|
139 |
+
```
|