--- license: mit base_model: - meta-llama/Llama-2-13b-hf --- **ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance. Please find more details in our [paper](https://arxiv.org/abs/2309.11674). ``` @misc{xu2023paradigm, title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models}, author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla}, year={2023}, eprint={2309.11674}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` **[ALMA-R](https://arxiv.org/abs/2401.08417) (NEW!) is released now!** ALMA-R builds upon ALMA models, with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co./datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners! ``` @misc{xu2024contrastive, title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}, author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year={2024}, eprint={2401.08417}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We release six translation models presented in the paper: - **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data - **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data - **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization. - **ALMA-13B**: Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data - **ALMA-13B-LoRA** (Our best system): Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **LoRA** fine-tune on human-written parallel data - **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization. Model checkpoints are released at huggingface: | Models | Base Model Link | LoRA Link | |:-------------:|:---------------:|:---------:| | ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co./haoranxu/ALMA-7B) | - | | ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co./haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co./haoranxu/ALMA-7B-Pretrain-LoRA) | | **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-R (LoRA merged)](https://huggingface.co./haoranxu/ALMA-7B-R) | - | | ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co./haoranxu/ALMA-13B) | - | | ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co./haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co./haoranxu/ALMA-13B-Pretrain-LoRA) | | **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-R (LoRA merged)](https://huggingface.co./haoranxu/ALMA-13B-R) | - | **Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.** Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!) | Datasets | Train / Validation| Test | |:-------------:|:---------------:|:---------:| | Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co./datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co./datasets/haoranxu/WMT22-Test) | | Triplet Preference Data | [train](https://huggingface.co./datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co./datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co./datasets/haoranxu/WMT23-Test) | A quick start to use system ALMA-13B-LoRA for translation. An example of translating "我爱机器翻译。" into English: ``` import torch from peft import PeftModel from transformers import AutoModelForCausalLM from transformers import LlamaTokenizer # Load base model and LoRA weights model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto") model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-Pretrain-LoRA") tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left') # Add the source setence into the prompt template prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:" input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda() # Translation with torch.no_grad(): generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(outputs) ``` Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)