File size: 25,582 Bytes
edde102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Net cash used in financing activities in 2023 was $2,430 million.
  sentences:
  - What criteria does Airbnb, Inc. use to assess if an available-for-sale security
    should be recorded as impaired on their financial statements?
  - What was the total amount of net cash used in financing activities in 2023?
  - How much did Visa authorize for its share repurchase program in October 2023?
- source_sentence: Microsoft® and Windows® are either registered trademarks or trademarks
    of Microsoft Corporation in the United States and/or other countries.
  sentences:
  - Where does Eli Lilly and Company manufacture and distribute its products?
  - What is the significance of Microsoft® and Windows® in relation to Microsoft Corporation?
  - What percentage of total net revenue did the Americas region contribute in 2023?
- source_sentence: We make available free of charge on the Investor Relations section
    of our corporate website all of the reports we file with or furnish to the SEC
    as soon as reasonably practicable, after the reports are filed or furnished.
  sentences:
  - Is there a cost to access reports filed by Intuit Inc. with the SEC?
  - What amount of cash, cash equivalents, and restricted cash did the company have
    at the end of the period?
  - Where in IBM’s 2023 Form 10-K can the Financial Statement Schedule be found?
- source_sentence: The U.S. Automobile Information and Disclosure Act also requires
    manufacturers of motor vehicles to disclose certain information regarding the
    manufacturer’s suggested retail price, optional equipment and pricing.
  sentences:
  - What does the Adjusted Effective Tax Rate measure exclude?
  - What was the fair value of the total consideration transferred for the acquisition
    discussed, and how was it composed?
  - Which act requires U.S. automobile manufacturers to disclose certain pricing and
    equipment information?
- source_sentence: Under the Insurance Act, Chubb's Bermuda domiciled subsidiaries
    are prohibited from declaring or paying any dividends of more than 25 percent
    of total statutory capital and surplus, as shown in its previous financial year
    statutory balance sheet, unless at least seven days before payment of the dividends,
    it files with the BMA an affidavit signed by at least two directors of the relevant
    Bermuda domiciled subsidiary (one of whom must be a director resident in Bermuda)
    and by the relevant Bermuda domiciled subsidiary’s principal representative, that
    it will continue to meet its required solvency margins. Furthermore, Bermuda domiciled
    subsidiaries may only declare and pay a dividend from retained earnings and a
    dividend or distribution from contributed surplus if it has no reasonable grounds
    for believing that it is, or would after the payment be, unable to pay its liabilities
    as they become due, or if the realizable value of its assets would be less than
    the aggregate of its liabilities. In addition, Chubb's Bermuda domiciled subsidiaries
    must obtain the BMA's prior approval before reducing total statutory capital,
    as shown in its previous financial year's financial statements, by 15 percent
    or more.
  sentences:
  - What are the restrictions and requirements for Bermuda domiciled subsidiaries
    regarding the distribution of dividends under the Insurance Act?
  - What section deals with financial statements and supplementary data?
  - What measures has the company implemented to ensure workplace safety?
pipeline_tag: sentence-similarity
model-index:
- name: BGE small Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7042857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8457142857142858
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.88
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9242857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7042857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28190476190476194
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.176
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09242857142857142
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7042857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8457142857142858
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.88
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9242857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8153543862763872
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7803667800453513
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7829122109320609
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7057142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8471428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8685714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9242857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7057142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28238095238095234
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17371428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09242857142857142
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7057142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8471428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8685714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9242857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.815124112835889
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7802040816326532
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7828080021041772
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.7071428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8385714285714285
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8757142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9228571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7071428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27952380952380956
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17514285714285713
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09228571428571428
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7071428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8385714285714285
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8757142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9228571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.815223056195625
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7808248299319727
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7833488292208493
      name: Cosine Map@100
---

# BGE small Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("haophancs/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "Under the Insurance Act, Chubb's Bermuda domiciled subsidiaries are prohibited from declaring or paying any dividends of more than 25 percent of total statutory capital and surplus, as shown in its previous financial year statutory balance sheet, unless at least seven days before payment of the dividends, it files with the BMA an affidavit signed by at least two directors of the relevant Bermuda domiciled subsidiary (one of whom must be a director resident in Bermuda) and by the relevant Bermuda domiciled subsidiary’s principal representative, that it will continue to meet its required solvency margins. Furthermore, Bermuda domiciled subsidiaries may only declare and pay a dividend from retained earnings and a dividend or distribution from contributed surplus if it has no reasonable grounds for believing that it is, or would after the payment be, unable to pay its liabilities as they become due, or if the realizable value of its assets would be less than the aggregate of its liabilities. In addition, Chubb's Bermuda domiciled subsidiaries must obtain the BMA's prior approval before reducing total statutory capital, as shown in its previous financial year's financial statements, by 15 percent or more.",
    'What are the restrictions and requirements for Bermuda domiciled subsidiaries regarding the distribution of dividends under the Insurance Act?',
    'What section deals with financial statements and supplementary data?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7043     |
| cosine_accuracy@3   | 0.8457     |
| cosine_accuracy@5   | 0.88       |
| cosine_accuracy@10  | 0.9243     |
| cosine_precision@1  | 0.7043     |
| cosine_precision@3  | 0.2819     |
| cosine_precision@5  | 0.176      |
| cosine_precision@10 | 0.0924     |
| cosine_recall@1     | 0.7043     |
| cosine_recall@3     | 0.8457     |
| cosine_recall@5     | 0.88       |
| cosine_recall@10    | 0.9243     |
| cosine_ndcg@10      | 0.8154     |
| cosine_mrr@10       | 0.7804     |
| **cosine_map@100**  | **0.7829** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7057     |
| cosine_accuracy@3   | 0.8471     |
| cosine_accuracy@5   | 0.8686     |
| cosine_accuracy@10  | 0.9243     |
| cosine_precision@1  | 0.7057     |
| cosine_precision@3  | 0.2824     |
| cosine_precision@5  | 0.1737     |
| cosine_precision@10 | 0.0924     |
| cosine_recall@1     | 0.7057     |
| cosine_recall@3     | 0.8471     |
| cosine_recall@5     | 0.8686     |
| cosine_recall@10    | 0.9243     |
| cosine_ndcg@10      | 0.8151     |
| cosine_mrr@10       | 0.7802     |
| **cosine_map@100**  | **0.7828** |

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7071     |
| cosine_accuracy@3   | 0.8386     |
| cosine_accuracy@5   | 0.8757     |
| cosine_accuracy@10  | 0.9229     |
| cosine_precision@1  | 0.7071     |
| cosine_precision@3  | 0.2795     |
| cosine_precision@5  | 0.1751     |
| cosine_precision@10 | 0.0923     |
| cosine_recall@1     | 0.7071     |
| cosine_recall@3     | 0.8386     |
| cosine_recall@5     | 0.8757     |
| cosine_recall@10    | 0.9229     |
| cosine_ndcg@10      | 0.8152     |
| cosine_mrr@10       | 0.7808     |
| **cosine_map@100**  | **0.7833** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 45.4 tokens</li><li>max: 252 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.43 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                       | anchor                                                                                                             |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|
  | <code>In 2023, $2.2 billion or 5% was primarily related to patient co-pay assistance, cash discounts for prompt payment, distributor fees, and sales return provisions.</code> | <code>What was the amount of sales return provisions in 2023 as part of gross-to-net deductions?</code>            |
  | <code>Cash and cash equivalents were $21.9 billion at the end of 2023 as compared to $14.1 billion at the end of 2022, showing a $7.8 billion increase.</code>                 | <code>How much did cash and cash equivalents increase by the end of 2023 compared to the end of 2022?</code>       |
  | <code>The net increase in cash and cash equivalents for UnitedHealthcare in 2023 compared to 2022 was $72 million.</code>                                                      | <code>What was the net increase in cash and cash equivalents for UnitedHealthcare in 2023 compared to 2022?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          384
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_384_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.8122     | 10     | 0.8256        | -                      | -                      | -                      |
| 0.9746     | 12     | -             | 0.7719                 | 0.7679                 | 0.7652                 |
| 1.6244     | 20     | 0.2984        | -                      | -                      | -                      |
| 1.9492     | 24     | -             | 0.7784                 | 0.7810                 | 0.7791                 |
| 2.4365     | 30     | 0.201         | -                      | -                      | -                      |
| 2.9239     | 36     | -             | 0.7835                 | 0.7832                 | 0.7828                 |
| 3.2487     | 40     | 0.1705        | -                      | -                      | -                      |
| **3.8985** | **48** | **-**         | **0.7833**             | **0.7828**             | **0.7829**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->