--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.575 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2677 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9379 | 0.97 | 13 | 1.2947 | 0.4875 | | 0.9235 | 1.95 | 26 | 1.3397 | 0.475 | | 0.8298 | 3.0 | 40 | 1.2971 | 0.5563 | | 0.8883 | 3.98 | 53 | 1.3434 | 0.4875 | | 0.8547 | 4.95 | 66 | 1.3226 | 0.475 | | 0.8129 | 6.0 | 80 | 1.3077 | 0.5062 | | 0.8095 | 6.97 | 93 | 1.2503 | 0.525 | | 0.7764 | 7.95 | 106 | 1.2989 | 0.5312 | | 0.7004 | 9.0 | 120 | 1.3383 | 0.4813 | | 0.7013 | 9.97 | 133 | 1.3370 | 0.5125 | | 0.6416 | 10.95 | 146 | 1.3073 | 0.5125 | | 0.5831 | 12.0 | 160 | 1.3192 | 0.5 | | 0.5968 | 12.97 | 173 | 1.2394 | 0.5375 | | 0.5434 | 13.95 | 186 | 1.3389 | 0.5188 | | 0.4605 | 15.0 | 200 | 1.2951 | 0.525 | | 0.4674 | 15.97 | 213 | 1.2038 | 0.5687 | | 0.3953 | 16.95 | 226 | 1.4019 | 0.5062 | | 0.3595 | 18.0 | 240 | 1.4442 | 0.4813 | | 0.3619 | 18.98 | 253 | 1.4213 | 0.525 | | 0.3304 | 19.95 | 266 | 1.2937 | 0.5437 | | 0.34 | 21.0 | 280 | 1.3024 | 0.5687 | | 0.4215 | 21.98 | 293 | 1.4018 | 0.5375 | | 0.3606 | 22.95 | 306 | 1.4221 | 0.5375 | | 0.3402 | 24.0 | 320 | 1.4987 | 0.4313 | | 0.3058 | 24.98 | 333 | 1.5120 | 0.5125 | | 0.3047 | 25.95 | 346 | 1.5749 | 0.5 | | 0.3616 | 27.0 | 360 | 1.4293 | 0.5188 | | 0.3315 | 27.98 | 373 | 1.5326 | 0.5312 | | 0.3535 | 28.95 | 386 | 1.5095 | 0.5188 | | 0.3056 | 29.25 | 390 | 1.5366 | 0.5 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3