--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.58125 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4116 - Accuracy: 0.5813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.3914 | 0.5312 | | No log | 2.0 | 20 | 1.3253 | 0.4875 | | No log | 3.0 | 30 | 1.4217 | 0.4813 | | No log | 4.0 | 40 | 1.3711 | 0.5062 | | No log | 5.0 | 50 | 1.3584 | 0.5 | | No log | 6.0 | 60 | 1.3163 | 0.5 | | No log | 7.0 | 70 | 1.3824 | 0.5188 | | No log | 8.0 | 80 | 1.3882 | 0.525 | | No log | 9.0 | 90 | 1.4126 | 0.5188 | | No log | 10.0 | 100 | 1.3213 | 0.5625 | | No log | 11.0 | 110 | 1.4385 | 0.5 | | No log | 12.0 | 120 | 1.3729 | 0.525 | | No log | 13.0 | 130 | 1.4603 | 0.4938 | | No log | 14.0 | 140 | 1.5326 | 0.4688 | | No log | 15.0 | 150 | 1.3687 | 0.5563 | | No log | 16.0 | 160 | 1.4537 | 0.55 | | No log | 17.0 | 170 | 1.5377 | 0.5188 | | No log | 18.0 | 180 | 1.6417 | 0.4688 | | No log | 19.0 | 190 | 1.5260 | 0.55 | | No log | 20.0 | 200 | 1.6854 | 0.4938 | | No log | 21.0 | 210 | 1.6457 | 0.5062 | | No log | 22.0 | 220 | 1.5855 | 0.5125 | | No log | 23.0 | 230 | 1.5083 | 0.5312 | | No log | 24.0 | 240 | 1.5656 | 0.525 | | No log | 25.0 | 250 | 1.5931 | 0.5125 | | No log | 26.0 | 260 | 1.4351 | 0.5687 | | No log | 27.0 | 270 | 1.5031 | 0.525 | | No log | 28.0 | 280 | 1.4129 | 0.55 | | No log | 29.0 | 290 | 1.5323 | 0.5125 | | No log | 30.0 | 300 | 1.5217 | 0.5625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3