--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - hansh/hansken_hql_cot library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: hansken_human_hql_v3 results: [] --- # hansken_human_hql_v3 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the hansh/hansken_hql_cot dataset. It achieves the following results on the evaluation set: - Loss: 0.5017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6267 | 1.0 | 469 | 0.6078 | | 0.5094 | 2.0 | 938 | 0.5335 | | 0.513 | 3.0 | 1407 | 0.5142 | | 0.4306 | 4.0 | 1876 | 0.5044 | | 0.4128 | 5.0 | 2345 | 0.5017 | | 0.3924 | 6.0 | 2814 | 0.5093 | | 0.3684 | 7.0 | 3283 | 0.5168 | | 0.3403 | 8.0 | 3752 | 0.5338 | | 0.311 | 9.0 | 4221 | 0.5566 | | 0.2853 | 10.0 | 4690 | 0.5920 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.1 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1