--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - hansh/hansken_hql_large library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: hansken_human_hql_v2 results: [] --- # hansken_human_hql_v2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the hansh/hansken_hql_large dataset. It achieves the following results on the evaluation set: - Loss: 0.3031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3676 | 0.9994 | 788 | 0.3796 | | 0.2968 | 2.0 | 1577 | 0.3381 | | 0.2658 | 2.9994 | 2365 | 0.3186 | | 0.2389 | 4.0 | 3154 | 0.3031 | | 0.2098 | 4.9994 | 3942 | 0.3035 | | 0.185 | 6.0 | 4731 | 0.3079 | | 0.1707 | 6.9994 | 5519 | 0.3125 | | 0.1578 | 8.0 | 6308 | 0.3237 | | 0.1426 | 8.9994 | 7096 | 0.3326 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.1 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1