hanifnoerr
commited on
Commit
·
6e2d8c3
1
Parent(s):
16aab09
Update README.md
Browse files
README.md
CHANGED
@@ -22,8 +22,10 @@ language:
|
|
22 |
- id
|
23 |
pipeline_tag: text-classification
|
24 |
widget:
|
25 |
-
- text: Orang bijak taat pajak
|
26 |
- text: sudah beli makan buat sahur?
|
|
|
|
|
|
|
27 |
---
|
28 |
|
29 |
# Kemenkeu-Sentiment-Classifier
|
@@ -37,12 +39,22 @@ Leaderboard score:
|
|
37 |
- Public score: 0.63733
|
38 |
- Private score: 0.65733
|
39 |
|
40 |
-
|
41 |
## Model description & limitations
|
42 |
|
43 |
- This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif]
|
44 |
- only for specific cases related to the Ministry Of Finance Indonesia
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
## Training and evaluation data
|
47 |
|
48 |
The following hyperparameters were used during training:
|
|
|
22 |
- id
|
23 |
pipeline_tag: text-classification
|
24 |
widget:
|
|
|
25 |
- text: sudah beli makan buat sahur?
|
26 |
+
- example_title: "contoh tidak relevan"
|
27 |
+
- text: Mengawal APBN, Indonesia Maju
|
28 |
+
- example_title: "contoh kalimat"
|
29 |
---
|
30 |
|
31 |
# Kemenkeu-Sentiment-Classifier
|
|
|
39 |
- Public score: 0.63733
|
40 |
- Private score: 0.65733
|
41 |
|
|
|
42 |
## Model description & limitations
|
43 |
|
44 |
- This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif]
|
45 |
- only for specific cases related to the Ministry Of Finance Indonesia
|
46 |
|
47 |
+
## How to use
|
48 |
+
You can use this model directly with a pipeline
|
49 |
+
|
50 |
+
```python
|
51 |
+
pretrained_name = "hanifnoerr/Kemenkeu-Sentiment-Classifier"
|
52 |
+
class_model = pipeline(tokenizer=pretrained_name, model=pretrained_name)
|
53 |
+
|
54 |
+
test_data = "Mengawal APBN, Indonesia Maju"
|
55 |
+
class_model(test_data)
|
56 |
+
```
|
57 |
+
|
58 |
## Training and evaluation data
|
59 |
|
60 |
The following hyperparameters were used during training:
|