hanifnoerr commited on
Commit
6e2d8c3
·
1 Parent(s): 16aab09

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -2
README.md CHANGED
@@ -22,8 +22,10 @@ language:
22
  - id
23
  pipeline_tag: text-classification
24
  widget:
25
- - text: Orang bijak taat pajak
26
  - text: sudah beli makan buat sahur?
 
 
 
27
  ---
28
 
29
  # Kemenkeu-Sentiment-Classifier
@@ -37,12 +39,22 @@ Leaderboard score:
37
  - Public score: 0.63733
38
  - Private score: 0.65733
39
 
40
-
41
  ## Model description & limitations
42
 
43
  - This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif]
44
  - only for specific cases related to the Ministry Of Finance Indonesia
45
 
 
 
 
 
 
 
 
 
 
 
 
46
  ## Training and evaluation data
47
 
48
  The following hyperparameters were used during training:
 
22
  - id
23
  pipeline_tag: text-classification
24
  widget:
 
25
  - text: sudah beli makan buat sahur?
26
+ - example_title: "contoh tidak relevan"
27
+ - text: Mengawal APBN, Indonesia Maju
28
+ - example_title: "contoh kalimat"
29
  ---
30
 
31
  # Kemenkeu-Sentiment-Classifier
 
39
  - Public score: 0.63733
40
  - Private score: 0.65733
41
 
 
42
  ## Model description & limitations
43
 
44
  - This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif]
45
  - only for specific cases related to the Ministry Of Finance Indonesia
46
 
47
+ ## How to use
48
+ You can use this model directly with a pipeline
49
+
50
+ ```python
51
+ pretrained_name = "hanifnoerr/Kemenkeu-Sentiment-Classifier"
52
+ class_model = pipeline(tokenizer=pretrained_name, model=pretrained_name)
53
+
54
+ test_data = "Mengawal APBN, Indonesia Maju"
55
+ class_model(test_data)
56
+ ```
57
+
58
  ## Training and evaluation data
59
 
60
  The following hyperparameters were used during training: