File size: 1,623 Bytes
817a81c
 
 
 
 
 
 
 
 
 
 
 
ee44763
 
 
817a81c
 
ee44763
817a81c
ee44763
 
 
 
 
 
 
ffd4b1d
817a81c
 
ee44763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
817a81c
ee44763
817a81c
 
 
ee44763
 
 
 
ffd4b1d
817a81c
 
 
 
 
 
ffd4b1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: Kemenkeu-Sentiment-Classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Kemenkeu-Sentiment-Classifier

This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co./indobenchmark/indobert-base-p1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8733
- Accuracy: 0.64
- F1: 0.5936

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.0146        | 1.0   | 500  | 0.8733          | 0.64     | 0.5936 |
| 0.7047        | 2.0   | 1000 | 0.8814          | 0.634    | 0.6008 |
| 0.5002        | 3.0   | 1500 | 0.9076          | 0.668    | 0.6446 |
| 0.3531        | 4.0   | 2000 | 0.9730          | 0.664    | 0.6374 |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3