File size: 2,245 Bytes
a398a38
 
 
 
 
ddf4382
 
a398a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd837e
a398a38
 
 
 
 
 
 
 
 
3bd837e
 
a398a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd837e
 
 
 
 
 
 
 
 
a398a38
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---

library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: TransparentBagClassifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8597560975609756
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TransparentBagClassifier

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3956
- Accuracy: 0.8598

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 1337

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.448         | 1.0   | 82   | 0.7304   | 0.5725          |
| 0.5097        | 2.0   | 164  | 0.7652   | 0.4946          |
| 0.452         | 3.0   | 246  | 0.7565   | 0.4841          |
| 0.3885        | 4.0   | 328  | 0.7565   | 0.4812          |
| 0.4743        | 5.0   | 410  | 0.7739   | 0.4626          |
| 0.4749        | 4.0   | 464  | 0.4572   | 0.7988          |
| 0.4319        | 5.0   | 580  | 0.3956   | 0.8598          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cpu
- Datasets 3.0.0
- Tokenizers 0.19.1