File size: 2,245 Bytes
a398a38 ddf4382 a398a38 3bd837e a398a38 3bd837e a398a38 3bd837e a398a38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: TransparentBagClassifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8597560975609756
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TransparentBagClassifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3956
- Accuracy: 0.8598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.448 | 1.0 | 82 | 0.7304 | 0.5725 |
| 0.5097 | 2.0 | 164 | 0.7652 | 0.4946 |
| 0.452 | 3.0 | 246 | 0.7565 | 0.4841 |
| 0.3885 | 4.0 | 328 | 0.7565 | 0.4812 |
| 0.4743 | 5.0 | 410 | 0.7739 | 0.4626 |
| 0.4749 | 4.0 | 464 | 0.4572 | 0.7988 |
| 0.4319 | 5.0 | 580 | 0.3956 | 0.8598 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cpu
- Datasets 3.0.0
- Tokenizers 0.19.1
|