File size: 6,302 Bytes
db1c682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
Metadata-Version: 2.1
Name: insightface
Version: 0.7.3
Summary: InsightFace Python Library
Home-page: https://github.com/deepinsight/insightface
Author: InsightFace Contributors
Author-email: [email protected]
License: MIT
Description-Content-Type: text/markdown
Requires-Dist: numpy
Requires-Dist: onnx
Requires-Dist: tqdm
Requires-Dist: requests
Requires-Dist: matplotlib
Requires-Dist: Pillow
Requires-Dist: scipy
Requires-Dist: scikit-learn
Requires-Dist: scikit-image
Requires-Dist: easydict
Requires-Dist: cython
Requires-Dist: albumentations
Requires-Dist: prettytable

# InsightFace Python Library

## License

The code of InsightFace Python Library is released under the MIT License. There is no limitation for both academic and commercial usage.

**The pretrained models we provided with this library are available for non-commercial research purposes only, including both auto-downloading models and manual-downloading models.**

## Install

### Install Inference Backend

For ``insightface<=0.1.5``, we use MXNet as inference backend.

Starting from insightface>=0.2, we use onnxruntime as inference backend.

You have to install ``onnxruntime-gpu`` manually to enable GPU inference, or install ``onnxruntime`` to use CPU only inference.

## Change Log

### [0.7.1] - 2022-12-14
  
#### Changed
  
- Change model downloading provider to cloudfront.

### [0.7] - 2022-11-28
  
#### Added

- Add face swapping model and example.
 
#### Changed
  
- Set default ORT provider to CUDA and CPU.
 
### [0.6] - 2022-01-29
  
#### Added

- Add pose estimation in face-analysis app.
 
#### Changed
  
- Change model automated downloading url, to ucloud.
 

## Quick Example

```
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')
faces = app.get(img)
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)
```

This quick example will detect faces from the ``t1.jpg`` image and draw detection results on it.



## Model Zoo

In the latest version of insightface library, we provide following model packs:

Name in **bold** is the default model pack. **Auto** means we can download the model pack through the python library directly.

Once you manually downloaded the zip model pack, unzip it under `~/.insightface/models/` first before you call the program.

| Name          | Detection Model | Recognition Model    | Alignment    | Attributes | Model-Size | Link                                                         | Auto |
| ------------- | --------------- | -------------------- | ------------ | ---------- | ---------- | ------------------------------------------------------------ | ------------- |
| antelopev2    | SCRFD-10GF      | ResNet100@Glint360K  | 2d106 & 3d68 | Gender&Age | 407MB      | [link](https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing) | N             |
| **buffalo_l** | SCRFD-10GF      | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 326MB      | [link](https://drive.google.com/file/d/1qXsQJ8ZT42_xSmWIYy85IcidpiZudOCB/view?usp=sharing) | Y             |
| buffalo_m     | SCRFD-2.5GF     | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 313MB      | [link](https://drive.google.com/file/d/1net68yNxF33NNV6WP7k56FS6V53tq-64/view?usp=sharing) | N             |
| buffalo_s     | SCRFD-500MF     | MBF@WebFace600K      | 2d106 & 3d68 | Gender&Age | 159MB      | [link](https://drive.google.com/file/d/1pKIusApEfoHKDjeBTXYB3yOQ0EtTonNE/view?usp=sharing) | N             |
| buffalo_sc    | SCRFD-500MF     | MBF@WebFace600K      | -            | -          | 16MB       | [link](https://drive.google.com/file/d/19I-MZdctYKmVf3nu5Da3HS6KH5LBfdzG/view?usp=sharing) | N             |



Recognition Accuracy:

| Name      | MR-ALL | African | Caucasian | South Asian | East Asian | LFW   | CFP-FP | AgeDB-30 | IJB-C(E4) |
| :-------- | ------ | ------- | --------- | ----------- | ---------- | ----- | ------ | -------- | --------- |
| buffalo_l | 91.25  | 90.29   | 94.70     | 93.16       | 74.96      | 99.83 | 99.33  | 98.23    | 97.25     |
| buffalo_s | 71.87  | 69.45   | 80.45     | 73.39       | 51.03      | 99.70 | 98.00  | 96.58    | 95.02     |

*buffalo_m has the same accuracy with buffalo_l.*

*buffalo_sc has the same accuracy with buffalo_s.*



**Note that these models are available for non-commercial research purposes only.**



For insightface>=0.3.3, models will be downloaded automatically once we init ``app = FaceAnalysis()`` instance.

For insightface==0.3.2, you must first download the model package by command:

```
insightface-cli model.download buffalo_l
```

## Use Your Own Licensed Model

You can simply create a new model directory under ``~/.insightface/models/`` and replace the pretrained models we provide with your own models. And then call ``app = FaceAnalysis(name='your_model_zoo')`` to load these models.

## Call Models

The latest insightface libary only supports onnx models. Once you have trained detection or recognition models by PyTorch, MXNet or any other frameworks, you can convert it to the onnx format and then they can be called with insightface library.

### Call Detection Models

```
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

# Method-1, use FaceAnalysis
app = FaceAnalysis(allowed_modules=['detection']) # enable detection model only
app.prepare(ctx_id=0, det_size=(640, 640))

# Method-2, load model directly
detector = insightface.model_zoo.get_model('your_detection_model.onnx')
detector.prepare(ctx_id=0, input_size=(640, 640))

```

### Call Recognition Models

```
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

handler = insightface.model_zoo.get_model('your_recognition_model.onnx')
handler.prepare(ctx_id=0)

```