File size: 6,302 Bytes
db1c682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
Metadata-Version: 2.1
Name: insightface
Version: 0.7.3
Summary: InsightFace Python Library
Home-page: https://github.com/deepinsight/insightface
Author: InsightFace Contributors
Author-email: [email protected]
License: MIT
Description-Content-Type: text/markdown
Requires-Dist: numpy
Requires-Dist: onnx
Requires-Dist: tqdm
Requires-Dist: requests
Requires-Dist: matplotlib
Requires-Dist: Pillow
Requires-Dist: scipy
Requires-Dist: scikit-learn
Requires-Dist: scikit-image
Requires-Dist: easydict
Requires-Dist: cython
Requires-Dist: albumentations
Requires-Dist: prettytable
# InsightFace Python Library
## License
The code of InsightFace Python Library is released under the MIT License. There is no limitation for both academic and commercial usage.
**The pretrained models we provided with this library are available for non-commercial research purposes only, including both auto-downloading models and manual-downloading models.**
## Install
### Install Inference Backend
For ``insightface<=0.1.5``, we use MXNet as inference backend.
Starting from insightface>=0.2, we use onnxruntime as inference backend.
You have to install ``onnxruntime-gpu`` manually to enable GPU inference, or install ``onnxruntime`` to use CPU only inference.
## Change Log
### [0.7.1] - 2022-12-14
#### Changed
- Change model downloading provider to cloudfront.
### [0.7] - 2022-11-28
#### Added
- Add face swapping model and example.
#### Changed
- Set default ORT provider to CUDA and CPU.
### [0.6] - 2022-01-29
#### Added
- Add pose estimation in face-analysis app.
#### Changed
- Change model automated downloading url, to ucloud.
## Quick Example
```
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')
faces = app.get(img)
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)
```
This quick example will detect faces from the ``t1.jpg`` image and draw detection results on it.
## Model Zoo
In the latest version of insightface library, we provide following model packs:
Name in **bold** is the default model pack. **Auto** means we can download the model pack through the python library directly.
Once you manually downloaded the zip model pack, unzip it under `~/.insightface/models/` first before you call the program.
| Name | Detection Model | Recognition Model | Alignment | Attributes | Model-Size | Link | Auto |
| ------------- | --------------- | -------------------- | ------------ | ---------- | ---------- | ------------------------------------------------------------ | ------------- |
| antelopev2 | SCRFD-10GF | ResNet100@Glint360K | 2d106 & 3d68 | Gender&Age | 407MB | [link](https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing) | N |
| **buffalo_l** | SCRFD-10GF | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 326MB | [link](https://drive.google.com/file/d/1qXsQJ8ZT42_xSmWIYy85IcidpiZudOCB/view?usp=sharing) | Y |
| buffalo_m | SCRFD-2.5GF | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 313MB | [link](https://drive.google.com/file/d/1net68yNxF33NNV6WP7k56FS6V53tq-64/view?usp=sharing) | N |
| buffalo_s | SCRFD-500MF | MBF@WebFace600K | 2d106 & 3d68 | Gender&Age | 159MB | [link](https://drive.google.com/file/d/1pKIusApEfoHKDjeBTXYB3yOQ0EtTonNE/view?usp=sharing) | N |
| buffalo_sc | SCRFD-500MF | MBF@WebFace600K | - | - | 16MB | [link](https://drive.google.com/file/d/19I-MZdctYKmVf3nu5Da3HS6KH5LBfdzG/view?usp=sharing) | N |
Recognition Accuracy:
| Name | MR-ALL | African | Caucasian | South Asian | East Asian | LFW | CFP-FP | AgeDB-30 | IJB-C(E4) |
| :-------- | ------ | ------- | --------- | ----------- | ---------- | ----- | ------ | -------- | --------- |
| buffalo_l | 91.25 | 90.29 | 94.70 | 93.16 | 74.96 | 99.83 | 99.33 | 98.23 | 97.25 |
| buffalo_s | 71.87 | 69.45 | 80.45 | 73.39 | 51.03 | 99.70 | 98.00 | 96.58 | 95.02 |
*buffalo_m has the same accuracy with buffalo_l.*
*buffalo_sc has the same accuracy with buffalo_s.*
**Note that these models are available for non-commercial research purposes only.**
For insightface>=0.3.3, models will be downloaded automatically once we init ``app = FaceAnalysis()`` instance.
For insightface==0.3.2, you must first download the model package by command:
```
insightface-cli model.download buffalo_l
```
## Use Your Own Licensed Model
You can simply create a new model directory under ``~/.insightface/models/`` and replace the pretrained models we provide with your own models. And then call ``app = FaceAnalysis(name='your_model_zoo')`` to load these models.
## Call Models
The latest insightface libary only supports onnx models. Once you have trained detection or recognition models by PyTorch, MXNet or any other frameworks, you can convert it to the onnx format and then they can be called with insightface library.
### Call Detection Models
```
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
# Method-1, use FaceAnalysis
app = FaceAnalysis(allowed_modules=['detection']) # enable detection model only
app.prepare(ctx_id=0, det_size=(640, 640))
# Method-2, load model directly
detector = insightface.model_zoo.get_model('your_detection_model.onnx')
detector.prepare(ctx_id=0, input_size=(640, 640))
```
### Call Recognition Models
```
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
handler = insightface.model_zoo.get_model('your_recognition_model.onnx')
handler.prepare(ctx_id=0)
```
|