File size: 1,997 Bytes
692964e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---

library_name: transformers
base_model: motheecreator/vit-Facial-Expression-Recognition
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-Facial-Expression-Recognition_checkpoints
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5885673959068455
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-Facial-Expression-Recognition_checkpoints



This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co./motheecreator/vit-Facial-Expression-Recognition) on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 1.1826

- Accuracy: 0.5886



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: cosine

- lr_scheduler_warmup_steps: 1000
- num_epochs: 3



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Accuracy |

|:-------------:|:------:|:----:|:---------------:|:--------:|

| 1.4533        | 2.2663 | 100  | 1.3534          | 0.4619   |





### Framework versions



- Transformers 4.44.2

- Pytorch 2.4.1+cpu

- Datasets 2.21.0

- Tokenizers 0.19.1