--- library_name: peft tags: - axolotl - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: tokenfight results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" hub_model_id: "hamel/tokenfight" ```

# tokenfight This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co./NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1753 | 0.01 | 1 | 1.1604 | | 0.9235 | 0.25 | 20 | 0.9296 | | 1.1097 | 0.5 | 40 | 0.9156 | | 0.9275 | 0.76 | 60 | 0.9006 | | 1.0284 | 1.01 | 80 | 0.8942 | | 0.8905 | 1.26 | 100 | 0.8930 | | 0.8952 | 1.51 | 120 | 0.9071 | | 0.8816 | 1.77 | 140 | 0.9189 | | 0.7187 | 2.02 | 160 | 0.9026 | | 0.5115 | 2.27 | 180 | 0.9251 | | 0.6322 | 2.52 | 200 | 0.9525 | | 0.7149 | 2.78 | 220 | 0.9638 | | 0.5881 | 3.03 | 240 | 0.9699 | | 0.5596 | 3.28 | 260 | 0.9750 | | 0.4989 | 3.53 | 280 | 1.0047 | | 0.3654 | 3.79 | 300 | 1.0035 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0