ppo-LunarLander-v2 / config.json
hainaw's picture
Upload PPO LunarLander-v2 trained agent
e60eaf9 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783a0138c820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783a0138c8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783a0138c940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783a0138c9d0>", "_build": "<function ActorCriticPolicy._build at 0x783a0138ca60>", "forward": "<function ActorCriticPolicy.forward at 0x783a0138caf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783a0138cb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783a0138cc10>", "_predict": "<function ActorCriticPolicy._predict at 0x783a0138cca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783a0138cd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783a0138cdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783a0138ce50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783a01331b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705184547445157879, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJppQTs9Zja7pkHruEIqXj1cLry72WKlvAAAgD8AAIA/mrtuvfRxoj/O6y6+xIB1vsmSCr4OF/m9AAAAAAAAAAANAqE9KcAXuriSMbqaOW20NB1YOnWwUzkAAIA/AACAP2Y6xb1Iw4S6fD9Guq0MLrUcETm7wyBnOQAAgD8AAIA/swsJPXuan7pNudI6FUYvNRPrW7rtXfG5AACAPwAAgD8zTMy9rkWtuuM/yTSEN7UvTTCPOc2O0bMAAIA/AACAPwBgXz3DQUu6C/qOO7moJzg6EHe6EiEEuAAAgD8AAIA/M4SjPVw3Wbp24iY4EfAoM77JbzuqKkS3AACAPwAAgD/mS509HyXAuVD45TqNlVU2h9JsuyI2CLoAAIA/AACAP5pROT3D/Q26BgZbOUQEcrDYaXK7GO+AuAAAgD8AAIA/gB+7vSkoH7qaYby4gCiOMplitrstkNs3AACAPwAAgD/NELU76ctePhxjHz56mmS+0/dnPdCUEb0AAAAAAAAAAHpGND5796M9IxPnvVuYNL5Y3QO9ag7mvAAAAAAAAAAAZiCzPfY4Z7qK0D06CR76tTkHKjsQzFe5AACAPwAAAAAavAs9KVg0ukIzSjoERSA1+PI5ujBnZrkAAIA/AACAP/PX0L3haJq6j2IOus1NLbbvaJC66JckOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHRWwNb1ROMAWyUTegDjAF0lEdAlOPGukk8inV9lChoBkdAZa6OU+s5n2gHTegDaAhHQJTlfLlmvnt1fZQoaAZHQGb7Huqm0mdoB03oA2gIR0CU5cTKkl/pdX2UKGgGR0BjjToSteUqaAdN6ANoCEdAlOY+RDCxeXV9lChoBkdAY7HGMGX5WWgHTegDaAhHQJTq5uR9w3p1fZQoaAZHQGFwr3TNMXdoB03oA2gIR0CU7C6ol2NedX2UKGgGR0Bj5XEwWWQfaAdN6ANoCEdAlOzQzDXOGHV9lChoBkdARxJQYUFjeGgHS/NoCEdAlPHKZ6Uqx3V9lChoBkdAYvkFTNt65WgHTegDaAhHQJTx8cR15jZ1fZQoaAZHQDZVa1TisGRoB0vvaAhHQJT4CoaUA1h1fZQoaAZHQEEq/SH/LkloB0vtaAhHQJT4uRfWtlt1fZQoaAZHQGQahkqc3ERoB03oA2gIR0CU+dyHmA9WdX2UKGgGR0Brle6K+BYnaAdNQwJoCEdAlPu4YBNmDnV9lChoBkdAYZs0uUUwjGgHTegDaAhHQJT70xqO9391fZQoaAZHQGbzK8+RoytoB03oA2gIR0CVCGSSvC/HdX2UKGgGR0BedneFcpsoaAdN6ANoCEdAlQ55/5LytnV9lChoBkdAYdIFVT72tmgHTegDaAhHQJUT431jAi51fZQoaAZHQGJape/pMYdoB03oA2gIR0CVFfo/zJ6qdX2UKGgGR0BK1uearmyPaAdL42gIR0CVFz0tyxRmdX2UKGgGR0BkbfCGetjkaAdN6ANoCEdAlRo1i8WbgHV9lChoBkdAY9yz0pVjqmgHTegDaAhHQJUxTzBhx5t1fZQoaAZHQGG5uY6XBxhoB03oA2gIR0CVMYay8jA0dX2UKGgGR0BjrZN9H+ZPaAdN6ANoCEdAlTHhx95Qg3V9lChoBkc/8Roi9qUNa2gHS+doCEdAlTTfHPu5SXV9lChoBkdAYs0IToMa0mgHTegDaAhHQJU1V1bJOnF1fZQoaAZHQFXSHt4RmK9oB0vJaAhHQJU3NArxy4p1fZQoaAZHQGODtDc/MW5oB03oA2gIR0CVO/3np0OmdX2UKGgGR0BlmELjPv8ZaAdN6ANoCEdAlTwmICU5dXV9lChoBkdASLUXtShrWWgHS9toCEdAlTyOkpI+XHV9lChoBkdAY/neO4oZymgHTegDaAhHQJVCFKg7HQ11fZQoaAZHQGBq7bUPQOZoB03oA2gIR0CVQrwrDqGDdX2UKGgGR0Bl9GjRD1GtaAdN6ANoCEdAlUPNAs052nV9lChoBkdAZGMqaw2VFGgHTegDaAhHQJVFdjurp7l1fZQoaAZHQGRN98Rcu8NoB03oA2gIR0CVRY/nGKhtdX2UKGgGR0BPQejEehf0aAdLzWgIR0CVU12DQJHBdX2UKGgGR0BiZpJNCZ4OaAdN6ANoCEdAlVw1IZqEe3V9lChoBkdAYjbx6OYIB2gHTegDaAhHQJVjEdgfEGZ1fZQoaAZHQGCTiAtnPE9oB03oA2gIR0CVZAqOcUdrdX2UKGgGR0Bm6awUxmCiaAdN6ANoCEdAlXv7EYO2A3V9lChoBkdAZM8jUNKAa2gHTegDaAhHQJV8MtnPE891fZQoaAZHQGK70y57PY5oB03oA2gIR0CVgPHSWqtHdX2UKGgGR0BfBj7IkqtpaAdN6ANoCEdAlYGXV09yLnV9lChoBkdAYsolKsdT52gHTegDaAhHQJWEKoLofSx1fZQoaAZHQF4jPIXCTEBoB03oA2gIR0CVinZMtbs4dX2UKGgGR0Bl5BVlwtJ4aAdN6ANoCEdAlYqi1iONpHV9lChoBkdAZx31MdtEX2gHTegDaAhHQJWLE8uBczJ1fZQoaAZHQEqaUHpr1uloB00AAWgIR0CVjEwjdHlPdX2UKGgGR0BwK9DRc/t6aAdNowJoCEdAlY3fe1rqMXV9lChoBkdAYxLy8SPEKmgHTegDaAhHQJWQYF1SwW51fZQoaAZHQGOf/aYeDFtoB03oA2gIR0CVkPQDFId3dX2UKGgGR0BiiF0cOskqaAdN6ANoCEdAlZILvPTodXV9lChoBkdAZ9P3NcGC7WgHTegDaAhHQJWTttVJcxF1fZQoaAZHQFWOCYkVvddoB0vtaAhHQJWWeR2bG3p1fZQoaAZHQEtpbg0j1PFoB00ZAWgIR0CVmC1L8JlbdX2UKGgGR0BSXzQJHAh0aAdL1WgIR0CVmFD+BH09dX2UKGgGR0BObX9itq59aAdNHQFoCEdAlZpA4jrzG3V9lChoBkdAZOBhVlwtKGgHTegDaAhHQJWmJ5NXYDl1fZQoaAZHQESvun/DLr5oB00DAWgIR0CVqN5e7cwhdX2UKGgGR0BiR2t0V8CxaAdN6ANoCEdAlazHMhX8wnV9lChoBkdAZHybCJoCdWgHTegDaAhHQJWtrnLaEjB1fZQoaAZHQG8NItUXHipoB02oA2gIR0CVsOkUsWfsdX2UKGgGR0BvMgazeGfxaAdNDANoCEdAlcfzeO4oZ3V9lChoBkdAYqF7Jnxri2gHTegDaAhHQJXLo/HHWBl1fZQoaAZHQF0TOB19v0hoB03oA2gIR0CVzBtelbeNdX2UKGgGR0BwLMUpNKywaAdN9QJoCEdAlczFcIJJG3V9lChoBkdAZEz7RfF72WgHTegDaAhHQJXNz7qIJqt1fZQoaAZHQHAdFBppN9JoB026AmgIR0CVz7wjMV1wdX2UKGgGR0Bux52ECeVcaAdNPwFoCEdAldFXIdU83nV9lChoBkdAb3D84PwuumgHTTkBaAhHQJXTl6D5CWx1fZQoaAZHQGfNewC8vmJoB03oA2gIR0CV2EPFefI0dX2UKGgGR0BkxrH2h7E6aAdN6ANoCEdAldlWnKnvUnV9lChoBkdAZRB3qzJIUmgHTegDaAhHQJXbXpaA4GV1fZQoaAZHQFHcaouPFNtoB0vwaAhHQJXc9SeiBXl1fZQoaAZHQGYdbGvOhTRoB03oA2gIR0CV4BVea8YidX2UKGgGR0Bmypisny/caAdN6ANoCEdAleA/7N0NjXV9lChoBkdAcKQclgMMJGgHTZYBaAhHQJXhfeEZiux1fZQoaAZHQG3mqqOtGNJoB00JAmgIR0CV5gt6ol2NdX2UKGgGR0BlPKpHZsbeaAdN6ANoCEdAlfFLqdH2AXV9lChoBkdAZi2xHoX9BWgHTegDaAhHQJX0KU5dWyV1fZQoaAZHQGMoy2phnapoB03oA2gIR0CV+FJMxoIwdX2UKGgGR0Bfp6raM72daAdN6ANoCEdAlgDHp8neBXV9lChoBkdAY8rndweeWmgHTegDaAhHQJYWtWHUMG51fZQoaAZHQGGb5hKDkENoB03oA2gIR0CWGFE/jbSJdX2UKGgGR0Bnw3Gff4yoaAdN6ANoCEdAlh3y6UaAF3V9lChoBkdAX4J8G9pRGmgHTegDaAhHQJYk2RKYiPh1fZQoaAZHQBk947ihnJ1oB0voaAhHQJYn4jeKsMl1fZQoaAZHQGWooqbz9TBoB03oA2gIR0CWKs+CK77LdX2UKGgGR0Bk/Cx3V09yaAdN6ANoCEdAliwXrUsnRnV9lChoBkdAZeNz6JqIrWgHTegDaAhHQJYuUDQqqfh1fZQoaAZHQGPjijUNKAdoB03oA2gIR0CWMC0JWvKVdX2UKGgGR0Bmi3H5rP+oaAdN6ANoCEdAljOwRf4REnV9lChoBkdAYTglSCOFQGgHTegDaAhHQJYz3T8YQ8R1fZQoaAZHQGHHoAwPAfxoB03oA2gIR0CWNSLidat+dX2UKGgGR0Bj2XdoFmnPaAdN6ANoCEdAljkIyTINmXV9lChoBkdAcS6YPoV2zWgHTRgDaAhHQJY75DneSB91fZQoaAZHQGKvYJNTLntoB03oA2gIR0CWQWpudf9hdX2UKGgGR0BxFdsHjZL7aAdNCwFoCEdAlkO41+AmRnV9lChoBkdAX6CdiDujRGgHTegDaAhHQJZEEMb3oLZ1fZQoaAZHQHE3EsFt8/loB00vAmgIR0CWR8D5CWu6dX2UKGgGR0BoOr30wrUcaAdN6ANoCEdAllEJFgDzRXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTE4LTk5ZmMxYzA5MWI4Mz6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}