--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: UIT-VSFC-XLNet-CLSModel-v1 results: [] --- # UIT-VSFC-XLNet-CLSModel-v1 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8462 - Accuracy: 0.5111 - F1: 0.2255 - Precision: 0.1704 - Recall: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 357 | 0.8558 | 0.4427 | 0.2046 | 0.1476 | 0.3333 | | 0.8379 | 2.0 | 714 | 0.8462 | 0.5111 | 0.2255 | 0.1704 | 0.3333 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1