--- base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: UIT-VSFC-PhoBert-CLSModel-v1 results: [] --- # UIT-VSFC-PhoBert-CLSModel-v1 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co./vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 - Accuracy: 0.9400 - F1: 0.8137 - Precision: 0.8659 - Recall: 0.7848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 90 | 0.3109 | 0.9154 | 0.6245 | 0.6099 | 0.6398 | | No log | 2.0 | 180 | 0.2242 | 0.9337 | 0.7738 | 0.8546 | 0.7438 | | No log | 3.0 | 270 | 0.2107 | 0.9400 | 0.8137 | 0.8659 | 0.7848 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1