File size: 1,355 Bytes
0261693
 
2616f9a
22423cf
 
7b92bc3
0261693
 
e00f1a0
0261693
dfcdb52
0261693
2616f9a
0261693
 
 
 
 
e00f1a0
22423cf
 
0261693
 
 
 
 
22423cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0261693
 
 
 
 
22423cf
0261693
 
 
22423cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
library_name: transformers
license: gemma
datasets:
- haesleinhuepf/bio-image-analysis-qa
pipeline_tag: text-generation
---

# Model Card for haesleinhuepf/gemma-2b-it-bia-proof-of-concept2

This is a proof-of-concept model. It is not properly trained. Do not use it for anything.

Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms/)

## Model Details

### Model Description

- **Developed by:** Robert Haase
- **License:** gemma license
- **Finetuned from model [optional]:** google/gemma-2b-it

## How to Get Started with the Model

Use the code below to get started with the model.

```
def prompt_hf(request, model="haesleinhuepf/gemma-2b-it-bia-proof-of-concept2"):
    global prompt_hf
    import transformers
    import torch
    
    if prompt_hf._pipeline is None:    
        prompt_hf._pipeline = transformers.pipeline(
            "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
        )
    
    return prompt_hf._pipeline(request)[0]['generated_text']
prompt_hf._pipeline = None

prompt_hf("What is the capital of France?")
```

## Training Details

### Training Data

https://huggingface.co./datasets/haesleinhuepf/bio-image-analysis-qa

## Model Card Contact

robert dot haase at uni minus leipzig dot de