--- language: - en license: apache-2.0 datasets: - OpenAssistant/oasst_top1_2023-08-25 pipeline_tag: text-generation model-index: - name: TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 31.14 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 54.31 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.42 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.72 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 57.77 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.29 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1 name: Open LLM Leaderboard --- TinyLlama-1.1B-intermediate-step-715k-1.5T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset. Qlora is used. Adapter is merged. SFT code: https://github.com/habanoz/qlora.git Command used: ```bash accelerate launch $BASE_DIR/qlora/train.py \ --model_name_or_path $BASE_MODEL \ --working_dir $BASE_DIR/$OUTPUT_NAME-checkpoints \ --output_dir $BASE_DIR/$OUTPUT_NAME-peft \ --merged_output_dir $BASE_DIR/$OUTPUT_NAME \ --final_output_dir $BASE_DIR/$OUTPUT_NAME-final \ --num_train_epochs 4 \ --logging_steps 1 \ --save_strategy steps \ --save_steps 75 \ --save_total_limit 2 \ --data_seed 11422 \ --evaluation_strategy steps \ --per_device_eval_batch_size 4 \ --eval_dataset_size 0.01 \ --eval_steps 75 \ --max_new_tokens 1024 \ --dataloader_num_workers 3 \ --logging_strategy steps \ --do_train \ --do_eval \ --lora_r 64 \ --lora_alpha 16 \ --lora_modules all \ --bits 4 \ --double_quant \ --quant_type nf4 \ --lr_scheduler_type constant \ --dataset oasst1-top1 \ --dataset_format oasst1 \ --model_max_len 1024 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --learning_rate 1e-5 \ --adam_beta2 0.999 \ --max_grad_norm 0.3 \ --lora_dropout 0.0 \ --weight_decay 0.0 \ --seed 11422 \ --gradient_checkpointing \ --use_flash_attention_2 \ --ddp_find_unused_parameters False ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_habanoz__TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-4epochs-oasst1-top1-instruct-V1) | Metric |Value| |---------------------------------|----:| |Avg. |35.28| |AI2 Reasoning Challenge (25-Shot)|31.14| |HellaSwag (10-Shot) |54.31| |MMLU (5-Shot) |25.42| |TruthfulQA (0-shot) |41.72| |Winogrande (5-shot) |57.77| |GSM8k (5-shot) | 1.29|