--- license: apache-2.0 tags: - TinyLlama - QLoRA - Politics - EU - News - sft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # TinyPoliticaLlama-1.1B TinyPoliticaLlama-1.1B is a SFT fine-tune of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) and a sister model of [h4rz3rk4s3/TinyParlaMintLlama-1.1B](https://huggingface.co./h4rz3rk4s3/TinyParlaMintLlama-1.1B) and [h4rz3rk4s3/TinyNewsLlama-1.1B](https://huggingface.co./h4rz3rk4s3/TinyNewsLlama-1.1B). This model was fine-tuned for ~24h on one A100 40GB on ~225M tokens on the training corpora of both her sister models. The goal of this project is to study the potential for improving the domain-specific (in this case political) knowledge of small (<3B) LLMs by concentrating the training datasets TF-IDF in respect to the underlying Topics found in the origianl Dataset. The used training data contains speeches from the **Austrian**, **Danish**, **French**, **British**, **Hungarian**, **Dutch**, **Norwegian**, **Polish**, **Swedish** and **Turkish** Parliament, as well as political news articles from **The New York Times**, **USA Today** and **The Washington Times**. ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import Accelerator import transformers import torch model = "h4rz3rk4s3/TinyPoliticaLlama-1.1B" messages = [ { "role": "system", "content": "You are an experienced journalist in the political domain and an expert of European politics.", }, {"role": "user", "content": "Write a short article explaining how the French yellow vest protests started, how they developed over time and how the French Government reacted to the protests."}, ] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model = AutoModelForCausalLM.from_pretrained( model, trust_remote_code=True, device_map={"": Accelerator().process_index} ) pipeline = transformers.pipeline( "text-generation", tokenizer=tokenizer, model=model, torch_dtype=torch.float16, device_map={"": Accelerator().process_index}, ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```