pushing lunar lander v2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 159.33 +/- 84.07
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b318ce5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b318ce680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b318ce710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b318ce7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f9b318ce830>", "forward": "<function ActorCriticPolicy.forward at 0x7f9b318ce8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b318ce950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9b318ce9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b318cea70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b318ceb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b318ceb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9b3189e5d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651877825.9055002, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIO4qD6cgpU+9szRvY4lS752fa89PDeqPQAAAAAAAAAAzR3pvnScWb1479y8ubWLvbOvZLwL0048AAAAAAAAAAB22LS+VMOSPR44Nr4QtBm+ci41vDZzur0AAAAAAAAAADPjF71cewa6jxUmPHpgjDQK/946c9gDMwAAgD8AAIA/XS2RPnrwnD8T2/M+AFyYvkwYiD7Wvp09AAAAAAAAAAAgqzK+JKQrPJ/xoDksy5o8qqOxvWH+l7oAAIA/AACAPzP/rTuFp7w60s+oO+XulTx3XHQ8VXWEPQAAAAAAAIA/zew2umUatD8TPHc7sNPpvU0P87uO2IS9AAAAAAAAAAA6VUA+25vFvE7CfT1W8GA8FUMZvr0dNb0AAIA/AACAP8BTzr24Lv+54hvUuoA83bVowiW7Ho30OQAAgD8AAIA/jfa9vXu2gLoP07m6ywYutjJzWzu2YdU5AACAPwAAgD9mLBG9XJtSuuRjnDtAXo44zymiOmtBX7kAAIA/AACAPxrdTT0UhoS6FMvKO2q3pTd8+zM7NhCONgAAgD8AAIA/zY5wvR9kn7vSCp87rb9MPNZxzbzybTE9AACAPwAAgD/mIay9e6qYujpecbotuHE21tV6uARTiTkAAIA/AACAP5PiFj4soAw+a0CDvXHRDL7EaXq8dX4avQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5Hp0OkjVECUhpRSlIwBbJRN6AOMAXSUR0CB20M85jpcdX2UKGgGaAloD0MIIuAQqtScNcCUhpRSlGgVS+xoFkdAgd9sXaakRHV9lChoBmgJaA9DCBzSqMDJ7V1AlIaUUpRoFU3oA2gWR0CCDlKISDh+dX2UKGgGaAloD0MIw9SWOshWXkCUhpRSlGgVTegDaBZHQIIPEZ1mrbR1fZQoaAZoCWgPQwh9rrZif4ZiQJSGlFKUaBVN6ANoFkdAghWqGcnVonV9lChoBmgJaA9DCG2QSUbOp11AlIaUUpRoFU3oA2gWR0CCFtwob4rSdX2UKGgGaAloD0MIAI3SpX/XWECUhpRSlGgVTegDaBZHQIIYD+irT6V1fZQoaAZoCWgPQwj+7bJfd7rpv5SGlFKUaBVN6ANoFkdAghiS1Vo6CHV9lChoBmgJaA9DCFeYvteQuGBAlIaUUpRoFU3oA2gWR0CCHAvZh8YydX2UKGgGaAloD0MIdO/hkuMgR8CUhpRSlGgVTS8BaBZHQIIhgwfyPMl1fZQoaAZoCWgPQwiGcTeIVhNgQJSGlFKUaBVN6ANoFkdAgimsMRYigXV9lChoBmgJaA9DCH14liAjkCNAlIaUUpRoFUv0aBZHQIIwD90ihWZ1fZQoaAZoCWgPQwivCP63knRgQJSGlFKUaBVN6ANoFkdAgjp7w8W9DnV9lChoBmgJaA9DCNlD+1jBM2VAlIaUUpRoFU3oA2gWR0CCRqi/wiJPdX2UKGgGaAloD0MIOPktOll4Y0CUhpRSlGgVTegDaBZHQIJUSNOuaF51fZQoaAZoCWgPQwhrn47HDNZZQJSGlFKUaBVN6ANoFkdAglylKsdT53V9lChoBmgJaA9DCGFwzR39N07AlIaUUpRoFU0YAWgWR0CCXfh6Skj5dX2UKGgGaAloD0MIrDlAMEe9XECUhpRSlGgVTegDaBZHQIJt7Imw7kp1fZQoaAZoCWgPQwjT25+Lhi5aQJSGlFKUaBVN6ANoFkdAgm9I/A0sOHV9lChoBmgJaA9DCJMZbyu9C25AlIaUUpRoFU2FA2gWR0CCeP9Nvfj0dX2UKGgGaAloD0MIrP4Iw4ClW0CUhpRSlGgVTegDaBZHQIJ56AlOXVt1fZQoaAZoCWgPQwhHWFTE6ZpOwJSGlFKUaBVNIwFoFkdAgnrZ6t1ZDHV9lChoBmgJaA9DCB1znrEvlmFAlIaUUpRoFU3oA2gWR0CChHT72tdSdX2UKGgGaAloD0MIm+eIfJf3V0CUhpRSlGgVTegDaBZHQIKxDOqvNeN1fZQoaAZoCWgPQwjWrDO+LxxZQJSGlFKUaBVN6ANoFkdAgrJF+mWMTHV9lChoBmgJaA9DCL3EWKZfh2BAlIaUUpRoFU3oA2gWR0CCtDH80k4WdX2UKGgGaAloD0MIT3gJTn0ZVkCUhpRSlGgVTegDaBZHQIK4CfSQYDV1fZQoaAZoCWgPQwgT1zGuuIZeQJSGlFKUaBVN6ANoFkdAgr4xB/qgRXV9lChoBmgJaA9DCAK37uapFEhAlIaUUpRoFUv2aBZHQILE00rK/211fZQoaAZoCWgPQwijHqLRHalcQJSGlFKUaBVN6ANoFkdAgsdDI7vG63V9lChoBmgJaA9DCEQxeQPMdlpAlIaUUpRoFU3oA2gWR0CCzlKGtZFHdX2UKGgGaAloD0MI+u/Ba5ceRcCUhpRSlGgVTRABaBZHQILQHf8/D+B1fZQoaAZoCWgPQwhLHk/LD/AzwJSGlFKUaBVNBwFoFkdAgtqMk6cRUXV9lChoBmgJaA9DCCEhyhc0zWxAlIaUUpRoFU0BA2gWR0CC3RqX4TK1dX2UKGgGaAloD0MIrKksCruZYkCUhpRSlGgVTegDaBZHQILi8ABDG991fZQoaAZoCWgPQwh96IL6lhkPwJSGlFKUaBVNBAFoFkdAgupb9If8uXV9lChoBmgJaA9DCEd0z7pG6xbAlIaUUpRoFUunaBZHQILtQzYVZcN1fZQoaAZoCWgPQwjQfqSIDLthQJSGlFKUaBVN6ANoFkdAgvbNHhCMP3V9lChoBmgJaA9DCAOUhhqFIl5AlIaUUpRoFU3oA2gWR0CDBnLjghr4dX2UKGgGaAloD0MI/pjWprHCXUCUhpRSlGgVTegDaBZHQIMHqUA1ejV1fZQoaAZoCWgPQwh9kdCWczEyQJSGlFKUaBVL6WgWR0CDCXHWjGkvdX2UKGgGaAloD0MIBkmfVtE4Y0CUhpRSlGgVTegDaBZHQIMQYecQRPJ1fZQoaAZoCWgPQwgp7Q2+MJBcQJSGlFKUaBVN6ANoFkdAgxEhPKuB+XV9lChoBmgJaA9DCGqF6XuNQGVAlIaUUpRoFU3oA2gWR0CDEecIZ62OdX2UKGgGaAloD0MIdjI4Sl4NXECUhpRSlGgVTegDaBZHQINFPfO2RaJ1fZQoaAZoCWgPQwjrGi0HeolhQJSGlFKUaBVN6ANoFkdAg0g+5OJtSHV9lChoBmgJaA9DCNSZe0j4vWFAlIaUUpRoFU3oA2gWR0CDTBoK2KEWdX2UKGgGaAloD0MIvi8uVWn0WECUhpRSlGgVTegDaBZHQINZtaSs8xN1fZQoaAZoCWgPQwjQ0hVsI3JcQJSGlFKUaBVN6ANoFkdAg1xtO/L1VnV9lChoBmgJaA9DCIqQup19qWFAlIaUUpRoFU3oA2gWR0CDZi/FirksdX2UKGgGaAloD0MI12t6UNCQYkCUhpRSlGgVTegDaBZHQIN2e7rcCYF1fZQoaAZoCWgPQwjJBWfw97pfQJSGlFKUaBVN6ANoFkdAg325Fw1iv3V9lChoBmgJaA9DCNKKbyj82GtAlIaUUpRoFU3cAmgWR0CDhLFl05lwdX2UKGgGaAloD0MIt2CpLmCIY0CUhpRSlGgVTegDaBZHQIOGCSLZSNx1fZQoaAZoCWgPQwgdd0oH668awJSGlFKUaBVNNwFoFkdAg45Bs67ulXV9lChoBmgJaA9DCHxD4bN19DpAlIaUUpRoFU3oA2gWR0CDkm5xzaK2dX2UKGgGaAloD0MIyZBj65lIYECUhpRSlGgVTegDaBZHQIOhyUkfLcN1fZQoaAZoCWgPQwjCpWPOM8YtwJSGlFKUaBVL9GgWR0CDohQYUFjedX2UKGgGaAloD0MIFeXS+IU/W0CUhpRSlGgVTegDaBZHQIOjJ4+r2g51fZQoaAZoCWgPQwj2KFyPwlhZQJSGlFKUaBVN6ANoFkdAg6vjhtLteHV9lChoBmgJaA9DCHEBaJQuZF9AlIaUUpRoFU3oA2gWR0CDrKUX531SdX2UKGgGaAloD0MIkQvO4O/yY0CUhpRSlGgVTegDaBZHQIOtgsXizcB1fZQoaAZoCWgPQwj5LqUuGYcgwJSGlFKUaBVL62gWR0CD4LMOf/WEdX2UKGgGaAloD0MIDtlAutg+XkCUhpRSlGgVTegDaBZHQIPhuA3DNyJ1fZQoaAZoCWgPQwiLwcO070lgQJSGlFKUaBVN6ANoFkdAg+TNaQmu1XV9lChoBmgJaA9DCKN06V+SRmFAlIaUUpRoFU3oA2gWR0CD6LwXIlt1dX2UKGgGaAloD0MIrADfbV6jY0CUhpRSlGgVTegDaBZHQIP1rUiILw51fZQoaAZoCWgPQwhSYAFMGZ5XQJSGlFKUaBVN6ANoFkdAg/gtEG7jDXV9lChoBmgJaA9DCFCnPLoR5hPAlIaUUpRoFU0+AWgWR0CEBZDXvphXdX2UKGgGaAloD0MIUwQ4vYvGZECUhpRSlGgVTegDaBZHQIQQho9LYf51fZQoaAZoCWgPQwidS3FV2e9bQJSGlFKUaBVN6ANoFkdAhBZtjbzshXV9lChoBmgJaA9DCGVx/5HplVbAlIaUUpRoFU2TAmgWR0CEGy28Zk08dX2UKGgGaAloD0MIZqTeUzlhXUCUhpRSlGgVTegDaBZHQIQeJOafBep1fZQoaAZoCWgPQwgna9RDtLBgQJSGlFKUaBVN6ANoFkdAhCXdcbBGhHV9lChoBmgJaA9DCBO54Az+T1xAlIaUUpRoFU3oA2gWR0CEKY2E0zj4dX2UKGgGaAloD0MIjjwQWaSJL0CUhpRSlGgVTUwBaBZHQIQ1P8hs67x1fZQoaAZoCWgPQwiFRNrGnxdcQJSGlFKUaBVN6ANoFkdAhDdWC/XXiHV9lChoBmgJaA9DCNrhr8kaDVdAlIaUUpRoFU3oA2gWR0CEOCb2lEZ0dX2UKGgGaAloD0MIZJP8iF/RCUCUhpRSlGgVTVMBaBZHQIQ/UCA+Y+l1fZQoaAZoCWgPQwiyEB0CR81dQJSGlFKUaBVN6ANoFkdAhEAusT37DXV9lChoBmgJaA9DCIYCtoMRVFdAlIaUUpRoFU3oA2gWR0CEQOAiml67dX2UKGgGaAloD0MI4UbKFknAX0CUhpRSlGgVTegDaBZHQIROZqynk1d1fZQoaAZoCWgPQwiOAdnr3fJgQJSGlFKUaBVN6ANoFkdAhHbErf+CLHV9lChoBmgJaA9DCLmKxW8KQ1dAlIaUUpRoFU3oA2gWR0CEet3yqdYodX2UKGgGaAloD0MIb9dLUwSyXUCUhpRSlGgVTegDaBZHQISIlhoduHh1fZQoaAZoCWgPQwgxmSoYFQVhQJSGlFKUaBVN6ANoFkdAhIsvE0iyIHV9lChoBmgJaA9DCA6jIHj8ymFAlIaUUpRoFU3oA2gWR0CEmbadMCcPdX2UKGgGaAloD0MImWclrXg4ZECUhpRSlGgVTegDaBZHQISsnIQvpQl1fZQoaAZoCWgPQwjPMotQbB1kQJSGlFKUaBVN6ANoFkdAhLV86eXiSHV9lChoBmgJaA9DCCkiwyre/WBAlIaUUpRoFU3oA2gWR0CEvenbZezEdX2UKGgGaAloD0MIjUephCctYECUhpRSlGgVTegDaBZHQITCMqH446x1fZQoaAZoCWgPQwiyEYjXdWBmQJSGlFKUaBVNNgNoFkdAhMgkPtlZo3V9lChoBmgJaA9DCM3mcRhM/GNAlIaUUpRoFU13AWgWR0CEydX+2mYTdX2UKGgGaAloD0MI46Qw73EhYUCUhpRSlGgVTegDaBZHQITO9u76Hj91fZQoaAZoCWgPQwjmdFlMbMtjQJSGlFKUaBVN6ANoFkdAhND6shgVoHV9lChoBmgJaA9DCFlqvd/oamJAlIaUUpRoFU3oA2gWR0CE0c+t8uzydX2UKGgGaAloD0MIE5z6QPKFXECUhpRSlGgVTegDaBZHQITYkGgSOBF1fZQoaAZoCWgPQwidSZuqe0JhQJSGlFKUaBVN6ANoFkdAhNllWXC0nnV9lChoBmgJaA9DCONUa2EWF1lAlIaUUpRoFU3oA2gWR0CE59dNWU8ndX2UKGgGaAloD0MIEcMOY1INZECUhpRSlGgVTegDaBZHQITrtq59Vm11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6536fd9703ec23d8bee3a01be4b95957941d617c11ced04f18e164691bfd1afd
|
3 |
+
size 144042
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b318ce5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b318ce680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b318ce710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b318ce7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9b318ce830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9b318ce8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b318ce950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9b318ce9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b318cea70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b318ceb00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b318ceb90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9b3189e5d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651877825.9055002,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIO4qD6cgpU+9szRvY4lS752fa89PDeqPQAAAAAAAAAAzR3pvnScWb1479y8ubWLvbOvZLwL0048AAAAAAAAAAB22LS+VMOSPR44Nr4QtBm+ci41vDZzur0AAAAAAAAAADPjF71cewa6jxUmPHpgjDQK/946c9gDMwAAgD8AAIA/XS2RPnrwnD8T2/M+AFyYvkwYiD7Wvp09AAAAAAAAAAAgqzK+JKQrPJ/xoDksy5o8qqOxvWH+l7oAAIA/AACAPzP/rTuFp7w60s+oO+XulTx3XHQ8VXWEPQAAAAAAAIA/zew2umUatD8TPHc7sNPpvU0P87uO2IS9AAAAAAAAAAA6VUA+25vFvE7CfT1W8GA8FUMZvr0dNb0AAIA/AACAP8BTzr24Lv+54hvUuoA83bVowiW7Ho30OQAAgD8AAIA/jfa9vXu2gLoP07m6ywYutjJzWzu2YdU5AACAPwAAgD9mLBG9XJtSuuRjnDtAXo44zymiOmtBX7kAAIA/AACAPxrdTT0UhoS6FMvKO2q3pTd8+zM7NhCONgAAgD8AAIA/zY5wvR9kn7vSCp87rb9MPNZxzbzybTE9AACAPwAAgD/mIay9e6qYujpecbotuHE21tV6uARTiTkAAIA/AACAP5PiFj4soAw+a0CDvXHRDL7EaXq8dX4avQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5Hp0OkjVECUhpRSlIwBbJRN6AOMAXSUR0CB20M85jpcdX2UKGgGaAloD0MIIuAQqtScNcCUhpRSlGgVS+xoFkdAgd9sXaakRHV9lChoBmgJaA9DCBzSqMDJ7V1AlIaUUpRoFU3oA2gWR0CCDlKISDh+dX2UKGgGaAloD0MIw9SWOshWXkCUhpRSlGgVTegDaBZHQIIPEZ1mrbR1fZQoaAZoCWgPQwh9rrZif4ZiQJSGlFKUaBVN6ANoFkdAghWqGcnVonV9lChoBmgJaA9DCG2QSUbOp11AlIaUUpRoFU3oA2gWR0CCFtwob4rSdX2UKGgGaAloD0MIAI3SpX/XWECUhpRSlGgVTegDaBZHQIIYD+irT6V1fZQoaAZoCWgPQwj+7bJfd7rpv5SGlFKUaBVN6ANoFkdAghiS1Vo6CHV9lChoBmgJaA9DCFeYvteQuGBAlIaUUpRoFU3oA2gWR0CCHAvZh8YydX2UKGgGaAloD0MIdO/hkuMgR8CUhpRSlGgVTS8BaBZHQIIhgwfyPMl1fZQoaAZoCWgPQwiGcTeIVhNgQJSGlFKUaBVN6ANoFkdAgimsMRYigXV9lChoBmgJaA9DCH14liAjkCNAlIaUUpRoFUv0aBZHQIIwD90ihWZ1fZQoaAZoCWgPQwivCP63knRgQJSGlFKUaBVN6ANoFkdAgjp7w8W9DnV9lChoBmgJaA9DCNlD+1jBM2VAlIaUUpRoFU3oA2gWR0CCRqi/wiJPdX2UKGgGaAloD0MIOPktOll4Y0CUhpRSlGgVTegDaBZHQIJUSNOuaF51fZQoaAZoCWgPQwhrn47HDNZZQJSGlFKUaBVN6ANoFkdAglylKsdT53V9lChoBmgJaA9DCGFwzR39N07AlIaUUpRoFU0YAWgWR0CCXfh6Skj5dX2UKGgGaAloD0MIrDlAMEe9XECUhpRSlGgVTegDaBZHQIJt7Imw7kp1fZQoaAZoCWgPQwjT25+Lhi5aQJSGlFKUaBVN6ANoFkdAgm9I/A0sOHV9lChoBmgJaA9DCJMZbyu9C25AlIaUUpRoFU2FA2gWR0CCeP9Nvfj0dX2UKGgGaAloD0MIrP4Iw4ClW0CUhpRSlGgVTegDaBZHQIJ56AlOXVt1fZQoaAZoCWgPQwhHWFTE6ZpOwJSGlFKUaBVNIwFoFkdAgnrZ6t1ZDHV9lChoBmgJaA9DCB1znrEvlmFAlIaUUpRoFU3oA2gWR0CChHT72tdSdX2UKGgGaAloD0MIm+eIfJf3V0CUhpRSlGgVTegDaBZHQIKxDOqvNeN1fZQoaAZoCWgPQwjWrDO+LxxZQJSGlFKUaBVN6ANoFkdAgrJF+mWMTHV9lChoBmgJaA9DCL3EWKZfh2BAlIaUUpRoFU3oA2gWR0CCtDH80k4WdX2UKGgGaAloD0MIT3gJTn0ZVkCUhpRSlGgVTegDaBZHQIK4CfSQYDV1fZQoaAZoCWgPQwgT1zGuuIZeQJSGlFKUaBVN6ANoFkdAgr4xB/qgRXV9lChoBmgJaA9DCAK37uapFEhAlIaUUpRoFUv2aBZHQILE00rK/211fZQoaAZoCWgPQwijHqLRHalcQJSGlFKUaBVN6ANoFkdAgsdDI7vG63V9lChoBmgJaA9DCEQxeQPMdlpAlIaUUpRoFU3oA2gWR0CCzlKGtZFHdX2UKGgGaAloD0MI+u/Ba5ceRcCUhpRSlGgVTRABaBZHQILQHf8/D+B1fZQoaAZoCWgPQwhLHk/LD/AzwJSGlFKUaBVNBwFoFkdAgtqMk6cRUXV9lChoBmgJaA9DCCEhyhc0zWxAlIaUUpRoFU0BA2gWR0CC3RqX4TK1dX2UKGgGaAloD0MIrKksCruZYkCUhpRSlGgVTegDaBZHQILi8ABDG991fZQoaAZoCWgPQwh96IL6lhkPwJSGlFKUaBVNBAFoFkdAgupb9If8uXV9lChoBmgJaA9DCEd0z7pG6xbAlIaUUpRoFUunaBZHQILtQzYVZcN1fZQoaAZoCWgPQwjQfqSIDLthQJSGlFKUaBVN6ANoFkdAgvbNHhCMP3V9lChoBmgJaA9DCAOUhhqFIl5AlIaUUpRoFU3oA2gWR0CDBnLjghr4dX2UKGgGaAloD0MI/pjWprHCXUCUhpRSlGgVTegDaBZHQIMHqUA1ejV1fZQoaAZoCWgPQwh9kdCWczEyQJSGlFKUaBVL6WgWR0CDCXHWjGkvdX2UKGgGaAloD0MIBkmfVtE4Y0CUhpRSlGgVTegDaBZHQIMQYecQRPJ1fZQoaAZoCWgPQwgp7Q2+MJBcQJSGlFKUaBVN6ANoFkdAgxEhPKuB+XV9lChoBmgJaA9DCGqF6XuNQGVAlIaUUpRoFU3oA2gWR0CDEecIZ62OdX2UKGgGaAloD0MIdjI4Sl4NXECUhpRSlGgVTegDaBZHQINFPfO2RaJ1fZQoaAZoCWgPQwjrGi0HeolhQJSGlFKUaBVN6ANoFkdAg0g+5OJtSHV9lChoBmgJaA9DCNSZe0j4vWFAlIaUUpRoFU3oA2gWR0CDTBoK2KEWdX2UKGgGaAloD0MIvi8uVWn0WECUhpRSlGgVTegDaBZHQINZtaSs8xN1fZQoaAZoCWgPQwjQ0hVsI3JcQJSGlFKUaBVN6ANoFkdAg1xtO/L1VnV9lChoBmgJaA9DCIqQup19qWFAlIaUUpRoFU3oA2gWR0CDZi/FirksdX2UKGgGaAloD0MI12t6UNCQYkCUhpRSlGgVTegDaBZHQIN2e7rcCYF1fZQoaAZoCWgPQwjJBWfw97pfQJSGlFKUaBVN6ANoFkdAg325Fw1iv3V9lChoBmgJaA9DCNKKbyj82GtAlIaUUpRoFU3cAmgWR0CDhLFl05lwdX2UKGgGaAloD0MIt2CpLmCIY0CUhpRSlGgVTegDaBZHQIOGCSLZSNx1fZQoaAZoCWgPQwgdd0oH668awJSGlFKUaBVNNwFoFkdAg45Bs67ulXV9lChoBmgJaA9DCHxD4bN19DpAlIaUUpRoFU3oA2gWR0CDkm5xzaK2dX2UKGgGaAloD0MIyZBj65lIYECUhpRSlGgVTegDaBZHQIOhyUkfLcN1fZQoaAZoCWgPQwjCpWPOM8YtwJSGlFKUaBVL9GgWR0CDohQYUFjedX2UKGgGaAloD0MIFeXS+IU/W0CUhpRSlGgVTegDaBZHQIOjJ4+r2g51fZQoaAZoCWgPQwj2KFyPwlhZQJSGlFKUaBVN6ANoFkdAg6vjhtLteHV9lChoBmgJaA9DCHEBaJQuZF9AlIaUUpRoFU3oA2gWR0CDrKUX531SdX2UKGgGaAloD0MIkQvO4O/yY0CUhpRSlGgVTegDaBZHQIOtgsXizcB1fZQoaAZoCWgPQwj5LqUuGYcgwJSGlFKUaBVL62gWR0CD4LMOf/WEdX2UKGgGaAloD0MIDtlAutg+XkCUhpRSlGgVTegDaBZHQIPhuA3DNyJ1fZQoaAZoCWgPQwiLwcO070lgQJSGlFKUaBVN6ANoFkdAg+TNaQmu1XV9lChoBmgJaA9DCKN06V+SRmFAlIaUUpRoFU3oA2gWR0CD6LwXIlt1dX2UKGgGaAloD0MIrADfbV6jY0CUhpRSlGgVTegDaBZHQIP1rUiILw51fZQoaAZoCWgPQwhSYAFMGZ5XQJSGlFKUaBVN6ANoFkdAg/gtEG7jDXV9lChoBmgJaA9DCFCnPLoR5hPAlIaUUpRoFU0+AWgWR0CEBZDXvphXdX2UKGgGaAloD0MIUwQ4vYvGZECUhpRSlGgVTegDaBZHQIQQho9LYf51fZQoaAZoCWgPQwidS3FV2e9bQJSGlFKUaBVN6ANoFkdAhBZtjbzshXV9lChoBmgJaA9DCGVx/5HplVbAlIaUUpRoFU2TAmgWR0CEGy28Zk08dX2UKGgGaAloD0MIZqTeUzlhXUCUhpRSlGgVTegDaBZHQIQeJOafBep1fZQoaAZoCWgPQwgna9RDtLBgQJSGlFKUaBVN6ANoFkdAhCXdcbBGhHV9lChoBmgJaA9DCBO54Az+T1xAlIaUUpRoFU3oA2gWR0CEKY2E0zj4dX2UKGgGaAloD0MIjjwQWaSJL0CUhpRSlGgVTUwBaBZHQIQ1P8hs67x1fZQoaAZoCWgPQwiFRNrGnxdcQJSGlFKUaBVN6ANoFkdAhDdWC/XXiHV9lChoBmgJaA9DCNrhr8kaDVdAlIaUUpRoFU3oA2gWR0CEOCb2lEZ0dX2UKGgGaAloD0MIZJP8iF/RCUCUhpRSlGgVTVMBaBZHQIQ/UCA+Y+l1fZQoaAZoCWgPQwiyEB0CR81dQJSGlFKUaBVN6ANoFkdAhEAusT37DXV9lChoBmgJaA9DCIYCtoMRVFdAlIaUUpRoFU3oA2gWR0CEQOAiml67dX2UKGgGaAloD0MI4UbKFknAX0CUhpRSlGgVTegDaBZHQIROZqynk1d1fZQoaAZoCWgPQwiOAdnr3fJgQJSGlFKUaBVN6ANoFkdAhHbErf+CLHV9lChoBmgJaA9DCLmKxW8KQ1dAlIaUUpRoFU3oA2gWR0CEet3yqdYodX2UKGgGaAloD0MIb9dLUwSyXUCUhpRSlGgVTegDaBZHQISIlhoduHh1fZQoaAZoCWgPQwgxmSoYFQVhQJSGlFKUaBVN6ANoFkdAhIsvE0iyIHV9lChoBmgJaA9DCA6jIHj8ymFAlIaUUpRoFU3oA2gWR0CEmbadMCcPdX2UKGgGaAloD0MImWclrXg4ZECUhpRSlGgVTegDaBZHQISsnIQvpQl1fZQoaAZoCWgPQwjPMotQbB1kQJSGlFKUaBVN6ANoFkdAhLV86eXiSHV9lChoBmgJaA9DCCkiwyre/WBAlIaUUpRoFU3oA2gWR0CEvenbZezEdX2UKGgGaAloD0MIjUephCctYECUhpRSlGgVTegDaBZHQITCMqH446x1fZQoaAZoCWgPQwiyEYjXdWBmQJSGlFKUaBVNNgNoFkdAhMgkPtlZo3V9lChoBmgJaA9DCM3mcRhM/GNAlIaUUpRoFU13AWgWR0CEydX+2mYTdX2UKGgGaAloD0MI46Qw73EhYUCUhpRSlGgVTegDaBZHQITO9u76Hj91fZQoaAZoCWgPQwjmdFlMbMtjQJSGlFKUaBVN6ANoFkdAhND6shgVoHV9lChoBmgJaA9DCFlqvd/oamJAlIaUUpRoFU3oA2gWR0CE0c+t8uzydX2UKGgGaAloD0MIE5z6QPKFXECUhpRSlGgVTegDaBZHQITYkGgSOBF1fZQoaAZoCWgPQwidSZuqe0JhQJSGlFKUaBVN6ANoFkdAhNllWXC0nnV9lChoBmgJaA9DCONUa2EWF1lAlIaUUpRoFU3oA2gWR0CE59dNWU8ndX2UKGgGaAloD0MIEcMOY1INZECUhpRSlGgVTegDaBZHQITrtq59Vm11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:930d9fef9aaad5499eae615de8caa9e23677046769e5886d893273f18f7f336f
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c568300c089d9bc2e8e755d6825e13c7fc11f245aa6d53dd78ee41ae73fdd27
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6482091f323f30808c61e522f175b61e80b697a97c414bbc3d482a761ec3f0c9
|
3 |
+
size 210765
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 159.33347628409746, "std_reward": 84.0747399561629, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T23:08:58.229263"}
|