File size: 19,775 Bytes
c87ee62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4",
      "authorship_tag": "ABX9TyM1x2mx2VnkYNFVlD+DFzmy",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Demo_LJSpeech.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Install packages and download models"
      ],
      "metadata": {
        "id": "nm653VK4CG9F"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "%%shell\n",
        "git clone https://github.com/yl4579/StyleTTS2.git\n",
        "cd StyleTTS2\n",
        "pip install SoundFile torchaudio munch torch pydub pyyaml librosa nltk matplotlib accelerate transformers phonemizer einops einops-exts tqdm typing-extensions git+https://github.com/resemble-ai/monotonic_align.git\n",
        "sudo apt-get install espeak-ng\n",
        "git-lfs clone https://huggingface.co./yl4579/StyleTTS2-LJSpeech\n",
        "mv StyleTTS2-LJSpeech/Models ."
      ],
      "metadata": {
        "id": "gciBKMqCCLvT"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Load models"
      ],
      "metadata": {
        "id": "OAA8lx-XCQnM"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "%cd StyleTTS2\n",
        "\n",
        "import torch\n",
        "torch.manual_seed(0)\n",
        "torch.backends.cudnn.benchmark = False\n",
        "torch.backends.cudnn.deterministic = True\n",
        "\n",
        "import random\n",
        "random.seed(0)\n",
        "\n",
        "import numpy as np\n",
        "np.random.seed(0)\n",
        "\n",
        "import nltk\n",
        "nltk.download('punkt')\n",
        "\n",
        "# load packages\n",
        "import time\n",
        "import random\n",
        "import yaml\n",
        "from munch import Munch\n",
        "import numpy as np\n",
        "import torch\n",
        "from torch import nn\n",
        "import torch.nn.functional as F\n",
        "import torchaudio\n",
        "import librosa\n",
        "from nltk.tokenize import word_tokenize\n",
        "\n",
        "from models import *\n",
        "from utils import *\n",
        "from text_utils import TextCleaner\n",
        "textclenaer = TextCleaner()\n",
        "\n",
        "%matplotlib inline\n",
        "\n",
        "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
        "\n",
        "to_mel = torchaudio.transforms.MelSpectrogram(\n",
        "    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)\n",
        "mean, std = -4, 4\n",
        "\n",
        "def length_to_mask(lengths):\n",
        "    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)\n",
        "    mask = torch.gt(mask+1, lengths.unsqueeze(1))\n",
        "    return mask\n",
        "\n",
        "def preprocess(wave):\n",
        "    wave_tensor = torch.from_numpy(wave).float()\n",
        "    mel_tensor = to_mel(wave_tensor)\n",
        "    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std\n",
        "    return mel_tensor\n",
        "\n",
        "def compute_style(ref_dicts):\n",
        "    reference_embeddings = {}\n",
        "    for key, path in ref_dicts.items():\n",
        "        wave, sr = librosa.load(path, sr=24000)\n",
        "        audio, index = librosa.effects.trim(wave, top_db=30)\n",
        "        if sr != 24000:\n",
        "            audio = librosa.resample(audio, sr, 24000)\n",
        "        mel_tensor = preprocess(audio).to(device)\n",
        "\n",
        "        with torch.no_grad():\n",
        "            ref = model.style_encoder(mel_tensor.unsqueeze(1))\n",
        "        reference_embeddings[key] = (ref.squeeze(1), audio)\n",
        "\n",
        "    return reference_embeddings\n",
        "\n",
        "# load phonemizer\n",
        "import phonemizer\n",
        "global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, words_mismatch='ignore')\n",
        "\n",
        "config = yaml.safe_load(open(\"Models/LJSpeech/config.yml\"))\n",
        "\n",
        "# load pretrained ASR model\n",
        "ASR_config = config.get('ASR_config', False)\n",
        "ASR_path = config.get('ASR_path', False)\n",
        "text_aligner = load_ASR_models(ASR_path, ASR_config)\n",
        "\n",
        "# load pretrained F0 model\n",
        "F0_path = config.get('F0_path', False)\n",
        "pitch_extractor = load_F0_models(F0_path)\n",
        "\n",
        "# load BERT model\n",
        "from Utils.PLBERT.util import load_plbert\n",
        "BERT_path = config.get('PLBERT_dir', False)\n",
        "plbert = load_plbert(BERT_path)\n",
        "\n",
        "model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert)\n",
        "_ = [model[key].eval() for key in model]\n",
        "_ = [model[key].to(device) for key in model]\n",
        "\n",
        "params_whole = torch.load(\"Models/LJSpeech/epoch_2nd_00100.pth\", map_location='cpu')\n",
        "params = params_whole['net']\n",
        "\n",
        "for key in model:\n",
        "    if key in params:\n",
        "        print('%s loaded' % key)\n",
        "        try:\n",
        "            model[key].load_state_dict(params[key])\n",
        "        except:\n",
        "            from collections import OrderedDict\n",
        "            state_dict = params[key]\n",
        "            new_state_dict = OrderedDict()\n",
        "            for k, v in state_dict.items():\n",
        "                name = k[7:] # remove `module.`\n",
        "                new_state_dict[name] = v\n",
        "            # load params\n",
        "            model[key].load_state_dict(new_state_dict, strict=False)\n",
        "#             except:\n",
        "#                 _load(params[key], model[key])\n",
        "_ = [model[key].eval() for key in model]\n",
        "\n",
        "from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule\n",
        "\n",
        "sampler = DiffusionSampler(\n",
        "    model.diffusion.diffusion,\n",
        "    sampler=ADPM2Sampler(),\n",
        "    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters\n",
        "    clamp=False\n",
        ")\n",
        "\n",
        "def inference(text, noise, diffusion_steps=5, embedding_scale=1):\n",
        "    text = text.strip()\n",
        "    text = text.replace('\"', '')\n",
        "    ps = global_phonemizer.phonemize([text])\n",
        "    ps = word_tokenize(ps[0])\n",
        "    ps = ' '.join(ps)\n",
        "\n",
        "    tokens = textclenaer(ps)\n",
        "    tokens.insert(0, 0)\n",
        "    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
        "\n",
        "    with torch.no_grad():\n",
        "        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)\n",
        "        text_mask = length_to_mask(input_lengths).to(tokens.device)\n",
        "\n",
        "        t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
        "        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
        "        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)\n",
        "\n",
        "        s_pred = sampler(noise,\n",
        "              embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,\n",
        "              embedding_scale=embedding_scale).squeeze(0)\n",
        "\n",
        "        s = s_pred[:, 128:]\n",
        "        ref = s_pred[:, :128]\n",
        "\n",
        "        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)\n",
        "\n",
        "        x, _ = model.predictor.lstm(d)\n",
        "        duration = model.predictor.duration_proj(x)\n",
        "        duration = torch.sigmoid(duration).sum(axis=-1)\n",
        "        pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
        "\n",
        "        pred_dur[-1] += 5\n",
        "\n",
        "        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
        "        c_frame = 0\n",
        "        for i in range(pred_aln_trg.size(0)):\n",
        "            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
        "            c_frame += int(pred_dur[i].data)\n",
        "\n",
        "        # encode prosody\n",
        "        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
        "        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
        "        out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)),\n",
        "                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
        "\n",
        "    return out.squeeze().cpu().numpy()\n",
        "\n",
        "def LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=5, embedding_scale=1):\n",
        "  text = text.strip()\n",
        "  text = text.replace('\"', '')\n",
        "  ps = global_phonemizer.phonemize([text])\n",
        "  ps = word_tokenize(ps[0])\n",
        "  ps = ' '.join(ps)\n",
        "\n",
        "  tokens = textclenaer(ps)\n",
        "  tokens.insert(0, 0)\n",
        "  tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
        "\n",
        "  with torch.no_grad():\n",
        "      input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)\n",
        "      text_mask = length_to_mask(input_lengths).to(tokens.device)\n",
        "\n",
        "      t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
        "      bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
        "      d_en = model.bert_encoder(bert_dur).transpose(-1, -2)\n",
        "\n",
        "      s_pred = sampler(noise,\n",
        "            embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,\n",
        "            embedding_scale=embedding_scale).squeeze(0)\n",
        "\n",
        "      if s_prev is not None:\n",
        "          # convex combination of previous and current style\n",
        "          s_pred = alpha * s_prev + (1 - alpha) * s_pred\n",
        "\n",
        "      s = s_pred[:, 128:]\n",
        "      ref = s_pred[:, :128]\n",
        "\n",
        "      d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)\n",
        "\n",
        "      x, _ = model.predictor.lstm(d)\n",
        "      duration = model.predictor.duration_proj(x)\n",
        "      duration = torch.sigmoid(duration).sum(axis=-1)\n",
        "      pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
        "\n",
        "      pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
        "      c_frame = 0\n",
        "      for i in range(pred_aln_trg.size(0)):\n",
        "          pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
        "          c_frame += int(pred_dur[i].data)\n",
        "\n",
        "      # encode prosody\n",
        "      en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
        "      F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
        "      out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)),\n",
        "                              F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
        "\n",
        "  return out.squeeze().cpu().numpy(), s_pred"
      ],
      "metadata": {
        "id": "m0XRpbxSCSix"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Synthesize speech"
      ],
      "metadata": {
        "id": "vuCbS0gdArgJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# @title Input Text { display-mode: \"form\" }\n",
        "# synthesize a text\n",
        "text = \"StyleTTS 2 is a text-to-speech model that leverages style diffusion and adversarial training with large speech language models to achieve human-level text-to-speech synthesis.\" # @param {type:\"string\"}\n"
      ],
      "metadata": {
        "id": "7Ud1Y-kbBPTw"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Basic synthesis (5 diffusion steps)"
      ],
      "metadata": {
        "id": "TM2NjuM7B6sz"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "start = time.time()\n",
        "noise = torch.randn(1,1,256).to(device)\n",
        "wav = inference(text, noise, diffusion_steps=5, embedding_scale=1)\n",
        "rtf = (time.time() - start) / (len(wav) / 24000)\n",
        "print(f\"RTF = {rtf:5f}\")\n",
        "import IPython.display as ipd\n",
        "display(ipd.Audio(wav, rate=24000))"
      ],
      "metadata": {
        "id": "KILqC-V-Ay5e"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### With higher diffusion steps (more diverse)\n",
        "Since the sampler is ancestral, the higher the stpes, the more diverse the samples are, with the cost of slower synthesis speed."
      ],
      "metadata": {
        "id": "oZk9o-EzCBVx"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "start = time.time()\n",
        "noise = torch.randn(1,1,256).to(device)\n",
        "wav = inference(text, noise, diffusion_steps=10, embedding_scale=1)\n",
        "rtf = (time.time() - start) / (len(wav) / 24000)\n",
        "print(f\"RTF = {rtf:5f}\")\n",
        "import IPython.display as ipd\n",
        "display(ipd.Audio(wav, rate=24000))"
      ],
      "metadata": {
        "id": "9_OHtzMbB9gL"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Speech expressiveness\n",
        "The following section recreates the samples shown in [Section 6](https://styletts2.github.io/#emo) of the demo page."
      ],
      "metadata": {
        "id": "NyDACd-0CaqL"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### With embedding_scale=1\n",
        "This is the classifier-free guidance scale. The higher the scale, the more conditional the style is to the input text and hence more emotional."
      ],
      "metadata": {
        "id": "cRkS5VWxCck4"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "texts = {}\n",
        "texts['Happy'] = \"We are happy to invite you to join us on a journey to the past, where we will visit the most amazing monuments ever built by human hands.\"\n",
        "texts['Sad'] = \"I am sorry to say that we have suffered a severe setback in our efforts to restore prosperity and confidence.\"\n",
        "texts['Angry'] = \"The field of astronomy is a joke! Its theories are based on flawed observations and biased interpretations!\"\n",
        "texts['Surprised'] = \"I can't believe it! You mean to tell me that you have discovered a new species of bacteria in this pond?\"\n",
        "\n",
        "for k,v in texts.items():\n",
        "    noise = torch.randn(1,1,256).to(device)\n",
        "    wav = inference(v, noise, diffusion_steps=10, embedding_scale=1)\n",
        "    print(k + \": \")\n",
        "    display(ipd.Audio(wav, rate=24000, normalize=False))"
      ],
      "metadata": {
        "id": "H5g5RO-mCbZB"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### With embedding_scale=2"
      ],
      "metadata": {
        "id": "f4S8TXSpCgpA"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "texts = {}\n",
        "texts['Happy'] = \"We are happy to invite you to join us on a journey to the past, where we will visit the most amazing monuments ever built by human hands.\"\n",
        "texts['Sad'] = \"I am sorry to say that we have suffered a severe setback in our efforts to restore prosperity and confidence.\"\n",
        "texts['Angry'] = \"The field of astronomy is a joke! Its theories are based on flawed observations and biased interpretations!\"\n",
        "texts['Surprised'] = \"I can't believe it! You mean to tell me that you have discovered a new species of bacteria in this pond?\"\n",
        "\n",
        "for k,v in texts.items():\n",
        "    noise = torch.randn(1,1,256).to(device)\n",
        "    wav = inference(v, noise, diffusion_steps=10, embedding_scale=2) # embedding_scale=2 for more pronounced emotion\n",
        "    print(k + \": \")\n",
        "    display(ipd.Audio(wav, rate=24000, normalize=False))"
      ],
      "metadata": {
        "id": "xHHIdeNrCezC"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Long-form generation\n",
        "This section includes basic implementation of Algorithm 1 in the paper for consistent longform audio generation. The example passage is taken from [Section 5](https://styletts2.github.io/#long) of the demo page."
      ],
      "metadata": {
        "id": "nAh7Tov4CkuH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "passage = '''If the supply of fruit is greater than the family needs, it may be made a source of income by sending the fresh fruit to the market if there is one near enough, or by preserving, canning, and making jelly for sale. To make such an enterprise a success the fruit and work must be first class. There is magic in the word \"Homemade,\" when the product appeals to the eye and the palate; but many careless and incompetent people have found to their sorrow that this word has not magic enough to float inferior goods on the market. As a rule large canning and preserving establishments are clean and have the best appliances, and they employ chemists and skilled labor. The home product must be very good to compete with the attractive goods that are sent out from such establishments. Yet for first-class homemade products there is a market in all large cities. All first-class grocers have customers who purchase such goods.''' # @param {type:\"string\"}"
      ],
      "metadata": {
        "cellView": "form",
        "id": "IJwUbgvACoDu"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "sentences = passage.split('.') # simple split by comma\n",
        "wavs = []\n",
        "s_prev = None\n",
        "for text in sentences:\n",
        "    if text.strip() == \"\": continue\n",
        "    text += '.' # add it back\n",
        "    noise = torch.randn(1,1,256).to(device)\n",
        "    wav, s_prev = LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=10, embedding_scale=1.5)\n",
        "    wavs.append(wav)\n",
        "display(ipd.Audio(np.concatenate(wavs), rate=24000, normalize=False))"
      ],
      "metadata": {
        "id": "nP-7i2QAC0JT"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}