File size: 19,775 Bytes
c87ee62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4",
"authorship_tag": "ABX9TyM1x2mx2VnkYNFVlD+DFzmy",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Demo_LJSpeech.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"### Install packages and download models"
],
"metadata": {
"id": "nm653VK4CG9F"
}
},
{
"cell_type": "code",
"source": [
"%%shell\n",
"git clone https://github.com/yl4579/StyleTTS2.git\n",
"cd StyleTTS2\n",
"pip install SoundFile torchaudio munch torch pydub pyyaml librosa nltk matplotlib accelerate transformers phonemizer einops einops-exts tqdm typing-extensions git+https://github.com/resemble-ai/monotonic_align.git\n",
"sudo apt-get install espeak-ng\n",
"git-lfs clone https://huggingface.co./yl4579/StyleTTS2-LJSpeech\n",
"mv StyleTTS2-LJSpeech/Models ."
],
"metadata": {
"id": "gciBKMqCCLvT"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Load models"
],
"metadata": {
"id": "OAA8lx-XCQnM"
}
},
{
"cell_type": "code",
"source": [
"%cd StyleTTS2\n",
"\n",
"import torch\n",
"torch.manual_seed(0)\n",
"torch.backends.cudnn.benchmark = False\n",
"torch.backends.cudnn.deterministic = True\n",
"\n",
"import random\n",
"random.seed(0)\n",
"\n",
"import numpy as np\n",
"np.random.seed(0)\n",
"\n",
"import nltk\n",
"nltk.download('punkt')\n",
"\n",
"# load packages\n",
"import time\n",
"import random\n",
"import yaml\n",
"from munch import Munch\n",
"import numpy as np\n",
"import torch\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"import torchaudio\n",
"import librosa\n",
"from nltk.tokenize import word_tokenize\n",
"\n",
"from models import *\n",
"from utils import *\n",
"from text_utils import TextCleaner\n",
"textclenaer = TextCleaner()\n",
"\n",
"%matplotlib inline\n",
"\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"\n",
"to_mel = torchaudio.transforms.MelSpectrogram(\n",
" n_mels=80, n_fft=2048, win_length=1200, hop_length=300)\n",
"mean, std = -4, 4\n",
"\n",
"def length_to_mask(lengths):\n",
" mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)\n",
" mask = torch.gt(mask+1, lengths.unsqueeze(1))\n",
" return mask\n",
"\n",
"def preprocess(wave):\n",
" wave_tensor = torch.from_numpy(wave).float()\n",
" mel_tensor = to_mel(wave_tensor)\n",
" mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std\n",
" return mel_tensor\n",
"\n",
"def compute_style(ref_dicts):\n",
" reference_embeddings = {}\n",
" for key, path in ref_dicts.items():\n",
" wave, sr = librosa.load(path, sr=24000)\n",
" audio, index = librosa.effects.trim(wave, top_db=30)\n",
" if sr != 24000:\n",
" audio = librosa.resample(audio, sr, 24000)\n",
" mel_tensor = preprocess(audio).to(device)\n",
"\n",
" with torch.no_grad():\n",
" ref = model.style_encoder(mel_tensor.unsqueeze(1))\n",
" reference_embeddings[key] = (ref.squeeze(1), audio)\n",
"\n",
" return reference_embeddings\n",
"\n",
"# load phonemizer\n",
"import phonemizer\n",
"global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, words_mismatch='ignore')\n",
"\n",
"config = yaml.safe_load(open(\"Models/LJSpeech/config.yml\"))\n",
"\n",
"# load pretrained ASR model\n",
"ASR_config = config.get('ASR_config', False)\n",
"ASR_path = config.get('ASR_path', False)\n",
"text_aligner = load_ASR_models(ASR_path, ASR_config)\n",
"\n",
"# load pretrained F0 model\n",
"F0_path = config.get('F0_path', False)\n",
"pitch_extractor = load_F0_models(F0_path)\n",
"\n",
"# load BERT model\n",
"from Utils.PLBERT.util import load_plbert\n",
"BERT_path = config.get('PLBERT_dir', False)\n",
"plbert = load_plbert(BERT_path)\n",
"\n",
"model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert)\n",
"_ = [model[key].eval() for key in model]\n",
"_ = [model[key].to(device) for key in model]\n",
"\n",
"params_whole = torch.load(\"Models/LJSpeech/epoch_2nd_00100.pth\", map_location='cpu')\n",
"params = params_whole['net']\n",
"\n",
"for key in model:\n",
" if key in params:\n",
" print('%s loaded' % key)\n",
" try:\n",
" model[key].load_state_dict(params[key])\n",
" except:\n",
" from collections import OrderedDict\n",
" state_dict = params[key]\n",
" new_state_dict = OrderedDict()\n",
" for k, v in state_dict.items():\n",
" name = k[7:] # remove `module.`\n",
" new_state_dict[name] = v\n",
" # load params\n",
" model[key].load_state_dict(new_state_dict, strict=False)\n",
"# except:\n",
"# _load(params[key], model[key])\n",
"_ = [model[key].eval() for key in model]\n",
"\n",
"from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule\n",
"\n",
"sampler = DiffusionSampler(\n",
" model.diffusion.diffusion,\n",
" sampler=ADPM2Sampler(),\n",
" sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters\n",
" clamp=False\n",
")\n",
"\n",
"def inference(text, noise, diffusion_steps=5, embedding_scale=1):\n",
" text = text.strip()\n",
" text = text.replace('\"', '')\n",
" ps = global_phonemizer.phonemize([text])\n",
" ps = word_tokenize(ps[0])\n",
" ps = ' '.join(ps)\n",
"\n",
" tokens = textclenaer(ps)\n",
" tokens.insert(0, 0)\n",
" tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
"\n",
" with torch.no_grad():\n",
" input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)\n",
" text_mask = length_to_mask(input_lengths).to(tokens.device)\n",
"\n",
" t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
" bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
" d_en = model.bert_encoder(bert_dur).transpose(-1, -2)\n",
"\n",
" s_pred = sampler(noise,\n",
" embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,\n",
" embedding_scale=embedding_scale).squeeze(0)\n",
"\n",
" s = s_pred[:, 128:]\n",
" ref = s_pred[:, :128]\n",
"\n",
" d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)\n",
"\n",
" x, _ = model.predictor.lstm(d)\n",
" duration = model.predictor.duration_proj(x)\n",
" duration = torch.sigmoid(duration).sum(axis=-1)\n",
" pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
"\n",
" pred_dur[-1] += 5\n",
"\n",
" pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
" c_frame = 0\n",
" for i in range(pred_aln_trg.size(0)):\n",
" pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
" c_frame += int(pred_dur[i].data)\n",
"\n",
" # encode prosody\n",
" en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
" F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
" out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)),\n",
" F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
"\n",
" return out.squeeze().cpu().numpy()\n",
"\n",
"def LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=5, embedding_scale=1):\n",
" text = text.strip()\n",
" text = text.replace('\"', '')\n",
" ps = global_phonemizer.phonemize([text])\n",
" ps = word_tokenize(ps[0])\n",
" ps = ' '.join(ps)\n",
"\n",
" tokens = textclenaer(ps)\n",
" tokens.insert(0, 0)\n",
" tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
"\n",
" with torch.no_grad():\n",
" input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)\n",
" text_mask = length_to_mask(input_lengths).to(tokens.device)\n",
"\n",
" t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
" bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
" d_en = model.bert_encoder(bert_dur).transpose(-1, -2)\n",
"\n",
" s_pred = sampler(noise,\n",
" embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,\n",
" embedding_scale=embedding_scale).squeeze(0)\n",
"\n",
" if s_prev is not None:\n",
" # convex combination of previous and current style\n",
" s_pred = alpha * s_prev + (1 - alpha) * s_pred\n",
"\n",
" s = s_pred[:, 128:]\n",
" ref = s_pred[:, :128]\n",
"\n",
" d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)\n",
"\n",
" x, _ = model.predictor.lstm(d)\n",
" duration = model.predictor.duration_proj(x)\n",
" duration = torch.sigmoid(duration).sum(axis=-1)\n",
" pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
"\n",
" pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
" c_frame = 0\n",
" for i in range(pred_aln_trg.size(0)):\n",
" pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
" c_frame += int(pred_dur[i].data)\n",
"\n",
" # encode prosody\n",
" en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
" F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
" out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)),\n",
" F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
"\n",
" return out.squeeze().cpu().numpy(), s_pred"
],
"metadata": {
"id": "m0XRpbxSCSix"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Synthesize speech"
],
"metadata": {
"id": "vuCbS0gdArgJ"
}
},
{
"cell_type": "code",
"source": [
"# @title Input Text { display-mode: \"form\" }\n",
"# synthesize a text\n",
"text = \"StyleTTS 2 is a text-to-speech model that leverages style diffusion and adversarial training with large speech language models to achieve human-level text-to-speech synthesis.\" # @param {type:\"string\"}\n"
],
"metadata": {
"id": "7Ud1Y-kbBPTw"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### Basic synthesis (5 diffusion steps)"
],
"metadata": {
"id": "TM2NjuM7B6sz"
}
},
{
"cell_type": "code",
"source": [
"start = time.time()\n",
"noise = torch.randn(1,1,256).to(device)\n",
"wav = inference(text, noise, diffusion_steps=5, embedding_scale=1)\n",
"rtf = (time.time() - start) / (len(wav) / 24000)\n",
"print(f\"RTF = {rtf:5f}\")\n",
"import IPython.display as ipd\n",
"display(ipd.Audio(wav, rate=24000))"
],
"metadata": {
"id": "KILqC-V-Ay5e"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### With higher diffusion steps (more diverse)\n",
"Since the sampler is ancestral, the higher the stpes, the more diverse the samples are, with the cost of slower synthesis speed."
],
"metadata": {
"id": "oZk9o-EzCBVx"
}
},
{
"cell_type": "code",
"source": [
"start = time.time()\n",
"noise = torch.randn(1,1,256).to(device)\n",
"wav = inference(text, noise, diffusion_steps=10, embedding_scale=1)\n",
"rtf = (time.time() - start) / (len(wav) / 24000)\n",
"print(f\"RTF = {rtf:5f}\")\n",
"import IPython.display as ipd\n",
"display(ipd.Audio(wav, rate=24000))"
],
"metadata": {
"id": "9_OHtzMbB9gL"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Speech expressiveness\n",
"The following section recreates the samples shown in [Section 6](https://styletts2.github.io/#emo) of the demo page."
],
"metadata": {
"id": "NyDACd-0CaqL"
}
},
{
"cell_type": "markdown",
"source": [
"#### With embedding_scale=1\n",
"This is the classifier-free guidance scale. The higher the scale, the more conditional the style is to the input text and hence more emotional."
],
"metadata": {
"id": "cRkS5VWxCck4"
}
},
{
"cell_type": "code",
"source": [
"texts = {}\n",
"texts['Happy'] = \"We are happy to invite you to join us on a journey to the past, where we will visit the most amazing monuments ever built by human hands.\"\n",
"texts['Sad'] = \"I am sorry to say that we have suffered a severe setback in our efforts to restore prosperity and confidence.\"\n",
"texts['Angry'] = \"The field of astronomy is a joke! Its theories are based on flawed observations and biased interpretations!\"\n",
"texts['Surprised'] = \"I can't believe it! You mean to tell me that you have discovered a new species of bacteria in this pond?\"\n",
"\n",
"for k,v in texts.items():\n",
" noise = torch.randn(1,1,256).to(device)\n",
" wav = inference(v, noise, diffusion_steps=10, embedding_scale=1)\n",
" print(k + \": \")\n",
" display(ipd.Audio(wav, rate=24000, normalize=False))"
],
"metadata": {
"id": "H5g5RO-mCbZB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### With embedding_scale=2"
],
"metadata": {
"id": "f4S8TXSpCgpA"
}
},
{
"cell_type": "code",
"source": [
"texts = {}\n",
"texts['Happy'] = \"We are happy to invite you to join us on a journey to the past, where we will visit the most amazing monuments ever built by human hands.\"\n",
"texts['Sad'] = \"I am sorry to say that we have suffered a severe setback in our efforts to restore prosperity and confidence.\"\n",
"texts['Angry'] = \"The field of astronomy is a joke! Its theories are based on flawed observations and biased interpretations!\"\n",
"texts['Surprised'] = \"I can't believe it! You mean to tell me that you have discovered a new species of bacteria in this pond?\"\n",
"\n",
"for k,v in texts.items():\n",
" noise = torch.randn(1,1,256).to(device)\n",
" wav = inference(v, noise, diffusion_steps=10, embedding_scale=2) # embedding_scale=2 for more pronounced emotion\n",
" print(k + \": \")\n",
" display(ipd.Audio(wav, rate=24000, normalize=False))"
],
"metadata": {
"id": "xHHIdeNrCezC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Long-form generation\n",
"This section includes basic implementation of Algorithm 1 in the paper for consistent longform audio generation. The example passage is taken from [Section 5](https://styletts2.github.io/#long) of the demo page."
],
"metadata": {
"id": "nAh7Tov4CkuH"
}
},
{
"cell_type": "code",
"source": [
"passage = '''If the supply of fruit is greater than the family needs, it may be made a source of income by sending the fresh fruit to the market if there is one near enough, or by preserving, canning, and making jelly for sale. To make such an enterprise a success the fruit and work must be first class. There is magic in the word \"Homemade,\" when the product appeals to the eye and the palate; but many careless and incompetent people have found to their sorrow that this word has not magic enough to float inferior goods on the market. As a rule large canning and preserving establishments are clean and have the best appliances, and they employ chemists and skilled labor. The home product must be very good to compete with the attractive goods that are sent out from such establishments. Yet for first-class homemade products there is a market in all large cities. All first-class grocers have customers who purchase such goods.''' # @param {type:\"string\"}"
],
"metadata": {
"cellView": "form",
"id": "IJwUbgvACoDu"
},
"execution_count": 8,
"outputs": []
},
{
"cell_type": "code",
"source": [
"sentences = passage.split('.') # simple split by comma\n",
"wavs = []\n",
"s_prev = None\n",
"for text in sentences:\n",
" if text.strip() == \"\": continue\n",
" text += '.' # add it back\n",
" noise = torch.randn(1,1,256).to(device)\n",
" wav, s_prev = LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=10, embedding_scale=1.5)\n",
" wavs.append(wav)\n",
"display(ipd.Audio(np.concatenate(wavs), rate=24000, normalize=False))"
],
"metadata": {
"id": "nP-7i2QAC0JT"
},
"execution_count": null,
"outputs": []
}
]
}
|