#!/bin/bash # $1 is the name of the scripts folder # pretrain.seed.0.yaml: main file, the pretrain model # first select the best model for TL based on validation dataset in pretrain if [ ! -f $1/pretrain.seed.0.summary ] || [ ! -s $1/pretrain.seed.0.summary ]; then Rscript plot.test.AUC.by.step.R $1/pretrain.seed.0.yaml > $1/pretrain.seed.0.summary fi number=$(cat $1/pretrain.seed.0.summary | grep 'val' | grep -oE '\([0-9]+\)' | sed 's/[(|)]//g') logdir=$(cat $1/pretrain.seed.0.yaml | grep log_dir | sed 's/.*: //') if [ -z $number ]; then best_model="null" else best_model=$logdir"model.step."$number".pt" fi echo "Best model is: "$best_model # origin hyper paramters lr_warmup_steps=$(cat $1/pretrain.seed.0.yaml | grep lr_warmup_steps | sed 's/.*: //' | sed 's/ #.*//g') num_save_batches=$(cat $1/pretrain.seed.0.yaml | grep num_save_batches | sed 's/.*: //' | sed 's/ #.*//g') target_num_save_batches=400 num_epochs=$(cat $1/pretrain.seed.0.yaml | grep num_epochs | sed 's/.*: //' | sed 's/ #.*//g') batch_size=$(cat $1/pretrain.seed.0.yaml | grep batch_size | sed 's/.*: //' | sed 's/ #.*//g') lr=$(cat $1/pretrain.seed.0.yaml | grep lr: | sed 's/.*: //' | sed 's/ #.*//g') half_lr=$(printf "%.1e" "$(echo "scale=10; $(printf "%f" "$lr")" | bc)") five_lr=$(printf "%.1e" "$(echo "scale=10; $(printf "%f" "$lr") * 5" | bc)") lr_min=$(cat $1/pretrain.seed.0.yaml | grep lr_min: | sed 's/.*: //' | sed 's/ #.*//g') half_lr_min=$(echo "$lr_min" | awk '{ printf "%.1e", $1/10 }') data_split=$(cat $1/pretrain.seed.0.yaml | grep data_split_fn | sed 's/.*: //' | sed 's/ #.*//g') loss_fn=$(cat $1/pretrain.seed.0.yaml | grep ^loss_fn | sed 's/.*: //' | sed 's/ #.*//g') drop_out=$(cat $1/pretrain.seed.0.yaml | grep drop_out | sed 's/.*: //' | sed 's/ #.*//g') num_steps_update=$(cat $1/pretrain.seed.0.yaml | grep num_steps_update | sed 's/.*: //' | sed 's/ #.*//g') ngpus=$(cat $1/pretrain.seed.0.yaml | grep ngpus | sed 's/.*: //' | sed 's/ #.*//g') nworkers=$(cat $1/pretrain.seed.0.yaml | grep num_workers | sed 's/.*: //' | sed 's/ #.*//g') target_nworkers=1 batch_size=$(cat $1/pretrain.seed.0.yaml | grep batch_size | sed 's/.*: //' | sed 's/ #.*//g') echo "loss_fn was: "$loss_fn if grep -q "_by_anno" $1/pretrain.seed.0.yaml; then echo "modify data-file-train in original yaml" if [ ! -f $1/pretrain.seed.0.yaml.bak ]; then cp $1/pretrain.seed.0.yaml $1/pretrain.seed.0.yaml.bak fi sed -i 's|_by_anno|""|g' $1/pretrain.seed.0.yaml changed_data=true else changed_data=false fi # prepare yaml files for all tasks for gene in fluorescence do # use original yaml as template cp $1/pretrain.seed.0.yaml $1/$gene.yaml # ngpu should be 1 sed -i "s|ngpus: "$ngpus"|ngpus: 1\nuse_lora: |g" $1/$gene.yaml # learning rate should be half sed -i "s|lr: "$lr"|lr: "$half_lr"|g" $1/$gene.yaml sed -i "s|lr_min: "$lr_min"|lr_min: "$half_lr_min"|g" $1/$gene.yaml # change data type sed -i "s|data_type: ClinVar|data_type: "$gene"|g" $1/$gene.yaml # change loss fn sed -i "s|loss_fn: "$loss_fn"|loss_fn: mse_loss|g" $1/$gene.yaml # change logdir sed -i "s|log_dir: "$logdir"|log_dir: "$logdir"TL."$gene".seed.0/|g" $1/$gene.yaml # change drop out rate sed -i "s|drop_out: "$drop_out"|drop_out: 0.1|g" $1/$gene.yaml # change num workers in dataloader sed -i "s|num_workers: "$nworkers"|num_workers: "$target_nworkers"|g" $1/$gene.yaml # change loaded msa if grep -q "loaded_msa" $1/pretrain.seed.0.yaml; then sed -i "s|loaded_msa: false|loaded_msa: true|g" $1/$gene.yaml else echo "loaded_msa: true" >> $1/$gene.yaml fi # change loaded confidence if grep -q "loaded_confidence" $1/pretrain.seed.0.yaml; then sed -i "s|loaded_confidence: false|loaded_confidence: true|g" $1/$gene.yaml else echo "loaded_confidence: true" >> $1/$gene.yaml fi if grep -q "loaded_esm" $1/pretrain.seed.0.yaml; then sed -i "s|loaded_esm: false|loaded_esm: true|g" $1/$gene.yaml else echo "loaded_esm: true" >> $1/$gene.yaml fi done # if original loss_fn is combined_loss or weighted_combined_loss, change loss back if [ "$loss_fn" == "combined_loss" ] || [ "$loss_fn" == "weighted_combined_loss" ] || [ "$loss_fn" == "GP_loss" ]; then for gene in $(cat scripts/pfams.txt) $(cat scripts/gene.pfams.txt) do sed -i "s|loss_fn: mse_loss|loss_fn: "$loss_fn"|g" $1/$gene.yaml done fi # for non human data, change learning rates and data split fn for gene in fluorescence do sed -i "s|pretrain|"$gene"|g" $1/$gene.yaml # change to large learning rate sed -i "s|lr: "$half_lr"|lr: "$lr"|g" $1/$gene.yaml # data split fn sed -i 's|data_split_fn: ""|data_split_fn: _by_anno|g' $1/$gene.yaml # don't add contrastive loss because they are from same protein sed -i "s|contrastive_loss_fn: cosin_contrastive_loss|contrastive_loss_fn: null|g" $1/$gene.yaml # change output model to regression sed -i "s|BinaryClassification|Regression|g" $1/$gene.yaml # change data split to with anno sed -i "s|data_split_fn: ""|data_split_fn: _by_anno|g" $1/$gene.yaml done # change seed for gene in fluorescence do # use original yaml as template mv $1/$gene.yaml $1/$gene.seed.0.yaml for seed in {1..4} do cp $1/$gene.seed.0.yaml $1/$gene.seed.$seed.yaml sed -i "s|seed: 0|seed: "$seed"|g" $1/$gene.seed.$seed.yaml sed -i "s|log_dir: "$logdir"TL."$gene".seed.0/|log_dir: "$logdir"TL."$gene".seed."$seed"/|g" $1/$gene.seed.$seed.yaml done # make a dir and move all yaml files into it mkdir -p $1/$gene mv $1/$gene.seed.*.yaml $1/$gene done if [ $changed_data = true ]; then echo "change data-file-train back to original yaml" mv $1/pretrain.seed.0.yaml.bak $1/pretrain.seed.0.yaml fi