import gzip import json import os import pickle from abc import abstractmethod from os.path import exists from typing import List import string import random import biotite.structure import numpy as np import pandas as pd import socket import torch from Bio.PDB import PDBParser from Bio.PDB.DSSP import DSSP from biopandas.pdb import PandasPdb from biotite.sequence import ProteinSequence from biotite.structure import get_chains from biotite.structure.io import pdbx, pdb from biotite.structure.residues import get_residues from torch_cluster import radius_graph, knn_graph # Path to the AF2 data AF2_DATA_PATH = './data.files/af2.files/' # unused in this version AF2_REP_DATA_PATH = "NA" # Path to the AF2 data ESM_MODEL_SIZE = '650M' ESM_DATA_PATH = f'./data.files/esm.files/' # Path to the ESM2 data MSA_DATA_PATH_ARCHIVE = './data.files/gMVP.MSA/' MSA_DATA_PATH = './data.files/MSA/' # unused in this version PAE_DATA_PATH = 'NA' # Path to the ESM_MSA data # TODO: update the path MSA_ATTN_DATA_PATH = './data.files/esm.MSA/' NUM_THREADS = 42 # prepare esm2 embeddings with open(f'./utils/LANGUAGE_MODEL.{ESM_MODEL_SIZE}.pkl', 'rb') as f: LANGUAGE_MODEL = pickle.load(f) with open(f'./utils/ALPHABET_CONVERTER.{ESM_MODEL_SIZE}.pkl', 'rb') as f: ALPHABET_CONVERTER = pickle.load(f) with open(f'./utils/ESM_AA_EMBEDDING_DICT.{ESM_MODEL_SIZE}.pkl', 'rb') as f: ESM_AA_EMBEDDING_DICT = pickle.load(f) with open(f'./utils/ESM_AA_EMBEDDING_DICT.esm1b.pkl', 'rb') as f: ESM1b_AA_EMBEDDING_DICT = pickle.load(f) # prepare 5dim embeddings with open(f'./utils/AA_5_DIM_EMBED.pkl', 'rb') as f: AA_5DIM_EMBED = pickle.load(f) # ESM tokens ESM_TOKENS = ['', '', '', '', 'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', '.', '-', '', ''] # amino acid dictionary, no padding token because it is not used (batch size is 1 as limited by GPU memory) AA_DICT = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', ''] AA_DICT_HUMAN = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C'] DSSP_DICT = ['H', 'B', 'E', 'G', 'I', 'T', 'S', '-', 'P'] PTM_DICT = {'ac': 0, 'ga': 1, 'gl': 2, 'm1': 3, 'm2': 4, 'm3': 5, 'me': 6, 'p': 7, 'sm': 8, 'ub': 9} class Mutation: """ A mutation object that stores the information of a mutation. Can specify max_len of sequence to crop the sequence. Can specify af2_file to ignore the input sequence and use the AF2 sequence instead. """ def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None): # initialize attributes self.seq = None self.seq_start = None self.seq_end = None self.seq_start_orig = None self.seq_end_orig = None self.pos = None self.uniprot_id = None self.af2_file = None self.af2_rep_file_prefix = None self.af2_seq_index = None self.msa_seq_index = None self.esm_seq_index = None self.af2_rep_index = None self.ref_aa = None self.alt_aa = None self.ESM_prefix = None self.crop = False self.seq_len = None self.seq_len_orig = None self.max_len = max_len self.half_max_len = max_len // 2 self.set_af2_fragment_idx(seq_orig, seq_orig_len, uniprot_id, pos_orig, af2_file) self.transcript_id = transcript_id self.set_ref_alt_aa(ref_aa, alt_aa) self.init_af2_file_idx() self.crop_fn() def set_af2_fragment_idx(self, seq_orig, seq_orig_len, uniprot_id, pos_orig, af2_file): self.seq_len_orig = seq_orig_len if isinstance(pos_orig, str): pos_orig = np.array([int(i) for i in pos_orig.split(';')]) else: pos_orig = np.array([int(pos_orig)]) if af2_file is None or pd.isna(af2_file): if uniprot_id.find('-F') != -1: idx = int(uniprot_id.split('-F')[-1]) uniprot_id = uniprot_id.split('-F')[0] seq_start = 1 seq_end = seq_orig_len self.seq_start_orig = seq_start self.seq_end_orig = seq_end seq = seq_orig pos = pos_orig self.ESM_prefix = f'{uniprot_id}-F{idx}' seq_len = 1400 self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}-F{idx}/{uniprot_id}-F{idx}' else: self.ESM_prefix = f'{uniprot_id}' if seq_orig_len > 2700: idx = min(max(1, pos_orig[0] // 200 - 2), seq_orig_len // 200 - 5) seq_start = (idx - 1) * 200 + 1 seq_end = min((idx + 6) * 200, seq_orig_len) self.seq_start_orig = seq_start self.seq_end_orig = seq_end seq = seq_orig[seq_start - 1:seq_end] pos = pos_orig - seq_start + 1 seq_len = seq_end - seq_start + 1 seq_start = 1 seq_end = seq_len else: idx = 1 seq_start = 1 seq_end = seq_orig_len self.seq_start_orig = seq_start self.seq_end_orig = seq_end seq_len = seq_orig_len seq = seq_orig pos = pos_orig if uniprot_id == "Q8WZ42": # This protein is TTN, which is too long self.ESM_prefix = f'{uniprot_id}-F{idx}' if seq_orig_len >= 7000: self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}-F{idx}/{uniprot_id}-F{idx}' else: self.af2_rep_file_prefix = f'{AF2_REP_DATA_PATH}/{uniprot_id}/{uniprot_id}' self.seq = seq self.seq_start = seq_start self.seq_end = seq_end self.seq_len = seq_len self.pos = pos self.uniprot_id = uniprot_id self.af2_file = f'{AF2_DATA_PATH}/AF-{uniprot_id}-F{idx}-model_v4.pdb.gz' else: self.af2_file = af2_file self.ESM_prefix = uniprot_id self.seq = seq_orig self.seq_start = 1 self.seq_end = seq_orig_len self.seq_start_orig = self.seq_start self.seq_end_orig = self.seq_end self.seq_len = seq_orig_len self.pos = pos_orig self.uniprot_id = uniprot_id def set_ref_alt_aa(self, ref_aa, alt_aa): # ref aa and alt aa are strings if ";" in ref_aa or ";" in alt_aa: # multiple mutations self.ref_aa = np.array(ref_aa.split(';')) self.alt_aa = np.array(alt_aa.split(';')) else: # single mutation self.ref_aa = np.array([ref_aa]) self.alt_aa = np.array([alt_aa]) def init_af2_file_idx(self): if not exists(self.af2_file): print(f'Warning: {self.uniprot_id} AF2 file not found: {self.af2_file}') self.af2_file = None # else: # af2_seq = AF2_SEQ_DICT[self.af2_file]['seq'] # if af2_seq != self.seq and not self.crop: # # if not match and not due to crop, then the seq is not in the AF2 file # print(f'Warning: {self.uniprot_id} seq not match AF2 seq: {self.seq} vs {af2_seq}') # self.af2_file = None self.af2_seq_index = None # Use index to avoid loading the same seq multiple times def crop_fn(self): seq_len = self.seq_len pos = self.pos seq_start = self.seq_start seq_end = self.seq_end seq = self.seq # remove sequence longer than max_len if seq_len >= self.max_len: if pos[0] <= self.half_max_len: seq_start = 1 seq_end = self.max_len seq = seq[:self.max_len] pos = pos seq_len = self.max_len elif seq_len - pos[0] <= self.max_len - self.half_max_len: seq_start = seq_len - self.max_len + 1 seq_end = seq_len seq = seq[seq_start - 1:] pos = pos - seq_start + 1 seq_len = self.max_len else: seq_start = pos[0] - self.half_max_len seq_end = pos[0] + self.max_len - self.half_max_len - 1 seq = seq[seq_start - 1:seq_end] pos = pos - seq_start + 1 seq_len = self.max_len self.crop = True self.seq = seq self.seq_start = seq_start self.seq_end = seq_end self.seq_len = seq_len self.pos = pos def set_af2_seq_index(self, idx): self.af2_seq_index = idx def set_msa_seq_index(self, idx): self.msa_seq_index = idx def set_esm_seq_index(self, idx): self.esm_seq_index = idx def set_af2_rep_index(self, idx): self.af2_rep_index = idx class RandomPointMutation(Mutation): def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, max_len=2251): pos_orig = np.random.randint(1, seq_orig_len + 1) ref_aa = seq_orig[pos_orig - 1] alt_aa = np.random.choice(list("ACDEFGHIKLMNPQRSTVWY")) super().__init__(uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len) class MaskPredictPointMutation(Mutation): # a class that support mask and predict as well as point mutation def __init__(self, uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None): if pos_orig is None or pos_orig == 0: pos_orig = np.random.randint(1, seq_orig_len + 1) self.ESM_prefix = None self.max_len = max_len self.half_max_len = max_len // 2 super().__init__(uniprot_id, transcript_id, seq_orig, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=max_len, af2_file=af2_file) # don't need ESM prefix def init_af2_file_idx(self): # don't check whether seq match AF2 seq if not exists(self.af2_file): print(f'Warning: {self.uniprot_id} AF2 file not found: {self.af2_file}') self.af2_file = None self.af2_seq_index = None # Use index to avoid loading the same seq multiple times def convert_to_onesite(dataset: pd.DataFrame): # first get unique uniprotID and pos.orig if 'ref_aa' not in dataset.columns: dataset['ref_aa'] = dataset['ref'] if 'alt_aa' not in dataset.columns: dataset['alt_aa'] = dataset['alt'] dataset_onesite = dataset.copy(deep=True) dataset_onesite = dataset_onesite.drop_duplicates(subset=['uniprotID', 'pos.orig']) # then for each unique uniprotID and pos.orig, get all ref and alt aa, as well as their scores # if exists the confidence of score, then use it, otherwise use 1 # get score and confidence.score columns score_cols = [col for col in dataset.columns if col.startswith('score')] confidence_cols = [col for col in dataset.columns if col.startswith('confidence.score')] # if confidence_cols is empty, then use 1 if len(confidence_cols) == 0: confidence_cols = [f'confidence.score.{i}' for i in range(len(score_cols))] for col in confidence_cols: dataset[col] = 1 dataset_onesite[col] = 1 for i in dataset_onesite.index: subdataset = dataset[(dataset['uniprotID'] == dataset_onesite.loc[i, 'uniprotID']) & (dataset['pos.orig'] == dataset_onesite.loc[i, 'pos.orig'])] dataset_onesite.loc[i, 'ref_aa'] = ';'.join(subdataset['ref_aa'].values) dataset_onesite.loc[i, 'alt_aa'] = ';'.join(subdataset['alt_aa'].values) # if score_cols and confidence_cols are not empty, then concatenate them if len(score_cols) > 0: for col in score_cols: dataset_onesite.loc[i, col] = ';'.join(subdataset[col].values.astype('str')) if len(confidence_cols) > 0: for col in confidence_cols: dataset_onesite.loc[i, col] = ';'.join(subdataset[col].values.astype('str')) return dataset_onesite def load_structure(fpath, chain=None): """ Args: fpath: filepath to either pdb or cif file chain: the chain id or list of chain ids to load Returns: biotite.structure.AtomArray """ if fpath.endswith('cif'): with open(fpath) as fin: pdbxf = pdbx.PDBxFile.read(fin) structure = pdbx.get_structure(pdbxf, model=1) elif fpath.endswith('cif.gz'): with gzip.open(fpath, 'rt') as fin: pdbxf = pdbx.PDBxFile.read(fin) structure = pdbx.get_structure(pdbxf, model=1) elif fpath.endswith('pdb'): with open(fpath) as fin: pdbf = pdb.PDBFile.read(fin) structure = pdb.get_structure(pdbf, model=1) elif fpath.endswith('pdb.gz'): with gzip.open(fpath, 'rt') as fin: pdbf = pdb.PDBFile.read(fin) structure = pdb.get_structure(pdbf, model=1) else: raise ValueError("Invalid file extension") # bbmask = filter_backbone(structure) # structure = structure[bbmask] all_chains = get_chains(structure) if len(all_chains) == 0: raise ValueError('No chains found in the input file.') if chain is None: chain_ids = all_chains elif isinstance(chain, list): chain_ids = chain else: chain_ids = [chain] for chain in chain_ids: if chain not in all_chains: raise ValueError(f'Chain {chain} not found in input file') chain_filter = [a.chain_id in chain_ids for a in structure] structure = structure[chain_filter] return structure def extract_coords_from_structure(structure: biotite.structure.AtomArray): """ Args: structure: An instance of biotite AtomArray Returns: Tuple coords - coords is an L x 5 x 3 array for N, C, O, CA, CB coordinates """ coords = get_atom_coords_residue_wise(["N", "C", "O", "CA", "CB"], structure) return coords def extract_sidechain_from_structure(structure: biotite.structure.AtomArray): """ Args: structure: An instance of biotite AtomArray Returns: Tuple coords - coords is an L x 31 x 3 array for side chain coordinates """ coords = get_atom_coords_residue_wise(['CD', 'CD1', 'CD2', 'CE', 'CE1', 'CE2', 'CE3', 'CG', 'CG1', 'CG2', 'CH2', 'CZ', 'CZ2', 'CZ3', 'ND1', 'ND2', 'NE', 'NE1', 'NE2', 'NH1', 'NH2', 'NZ', 'OD1', 'OD2', 'OE1', 'OE2', 'OG', 'OG1', 'OH', 'SD', 'SG'], structure) return coords def extract_residues_from_structure(structure: biotite.structure.AtomArray): """ Args: structure: An instance of biotite AtomArray Returns: Tuple (coords, seq) - coords is an L x 3 x 3 array for N, CA, C coordinates - seq is the extracted sequence """ residue_identities = get_residues(structure)[1] seq = ''.join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities]) return seq def get_atom_coords_residue_wise(atoms: List[str], struct: biotite.structure.AtomArray): """ Example for atoms argument: ["N", "O", "CA", "C", "CB"] """ def filterfn(s, axis=None): filters = np.stack([s.atom_name == name for name in atoms], axis=1) filter_sum = filters.sum(0) if not np.all(filter_sum <= np.ones(filters.shape[1])): raise RuntimeError("structure has multiple atoms with same name") index = filters.argmax(0) coords = s[index].coord coords[filter_sum == 0] = float("nan") return coords return biotite.structure.apply_residue_wise(struct, struct, filterfn) def get_mutations(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=1400, af2_file=None): mutation = Mutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len, af2_file) if mutation.af2_file is None: print( f"No AF2 file found for this mutation "+ f"{mutation.uniprot_id}:{mutation.ref_aa}:{mutation.pos}:{mutation.alt_aa}. Skipping..." ) return False else: return mutation def get_random_point_mutations(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, score): if score == -1: point_mutation = RandomPointMutation(uniprot_id, transcript_id, seq, seq_orig_len) else: point_mutation = Mutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa) if point_mutation.af2_file is None: return False else: return point_mutation def get_mask_predict_point_mutations(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len=2251, af2_file=None): point_mutation = MaskPredictPointMutation(uniprot_id, transcript_id, seq, seq_orig_len, pos_orig, ref_aa, alt_aa, max_len, af2_file) # print("finished loading point mutation") if point_mutation.af2_file is None: print( f"No AF2 file found for this mutation "+ f"{point_mutation.uniprot_id}:{point_mutation.ref_aa}:{point_mutation.pos}:{point_mutation.alt_aa}. Skipping..." ) return False else: return point_mutation def get_coords_from_af2(af2_file, add_sidechain=False): pdb_path = af2_file structure = load_structure(pdb_path) af2_coords = extract_coords_from_structure(structure) if add_sidechain: af2_coords_sidechain = extract_sidechain_from_structure(structure) af2_coords = np.concatenate([af2_coords, af2_coords_sidechain], axis=1) return af2_coords def get_plddt_from_af2(af2_file): pdb_file = PandasPdb().read_pdb(af2_file) pdb_file = pdb_file.df['ATOM'].drop_duplicates(subset=['residue_number']) plddt = pdb_file['b_factor'].values return plddt def get_dssp_from_af2(af2_file): p = PDBParser() with gzip.open(af2_file, 'rt') as f: structure = p.get_structure('', f) model = structure[0] # try: # dssp = DSSP(model, af2_file, file_type="PDB", dssp="/usr/bin/dssp") # except Exception or UserWarning: random.seed(hash(af2_file)) tmpfile = '/share/descartes/Users/gz2294/tmp/'+ ''.join(random.choices(string.ascii_letters, k=5)) + '.pdb' with open(tmpfile, 'w') as f: f.write(gzip.open(af2_file, 'rt').read()) dssp = DSSP(model, tmpfile, file_type="PDB", dssp="/share/descartes/Users/gz2294/miniconda3/bin/mkdssp") os.remove(tmpfile) # keys in dssp: index, aa, secondary struc, rsa, phi, psi, N-H-->O, O-->H-N, N-H-->O, O-->H-N dssp = pd.DataFrame(dssp) sec_struc = np.eye(len(DSSP_DICT), dtype=np.float32)[[DSSP_DICT.index(i) for i in dssp.iloc[:, 2].values]] return np.concatenate([sec_struc, dssp.iloc[:, 3].values[:, None], dssp.iloc[:, 4].values[:, None] / 180 * np.pi, dssp.iloc[:, 5].values[:, None] / 180 * np.pi], axis=1) def get_ptm_from_mutation(mutation: Mutation, ptm_ref): # for each af2 file, match the PTM anno to it # get uniprotID uniprotID = mutation.uniprot_id ptm_ref = ptm_ref[ptm_ref['uniprotID'] == uniprotID] seq = mutation.seq # get fragment start and end ptm_ref['pos'] = ptm_ref['pos'] - mutation.seq_start_orig - mutation.seq_start + 1 ptm_ref = ptm_ref[ptm_ref['pos'] >= 0] ptm_ref = ptm_ref[ptm_ref['pos'] < mutation.seq_len] ptm_mat = np.zeros([mutation.seq_len, len(PTM_DICT)]) for i in ptm_ref.index: if ptm_ref['ref'].loc[i] == seq[ptm_ref['pos'].loc[i]]: ptm_mat[ptm_ref['pos'].loc[i], PTM_DICT[ptm_ref['type'].loc[i]]] = 1 return ptm_mat def get_knn_graphs_from_af2(af2_coords, radius=None, max_neighbors=None, loop=False, gpu_id=None): CA_coord = af2_coords[:, 3] if radius is None: edge_index = np.indices((af2_coords.shape[0], af2_coords.shape[0])).reshape(2, -1) # cancel self-edges if not loop: edge_index = edge_index[:, edge_index[0] != edge_index[1]] else: if max_neighbors is None: max_neighbors = af2_coords.shape[0] + 1 with torch.no_grad(): CA_coord = torch.from_numpy(CA_coord) edge_index = knn_graph( x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord, # r=radius, loop=loop, # max_num_neighbors=max_neighbors, k=max_neighbors, num_workers=NUM_THREADS, ).detach().cpu().numpy() del CA_coord return edge_index def get_radius_graphs_from_af2(af2_coords, radius, loop=False, gpu_id=None): CA_coord = af2_coords[:, 3] max_neighbors = af2_coords.shape[0] + 1 with torch.no_grad(): CA_coord = torch.from_numpy(CA_coord) edge_index = radius_graph( x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord, r=radius, loop=loop, max_num_neighbors=max_neighbors, num_workers=NUM_THREADS, ).detach().cpu().numpy() del CA_coord return edge_index def get_radius_knn_graphs_from_af2(af2_coords, center_nodes, radius, max_neighbors, loop=False, gpu_id=None): # first get radius graph at the center nodes, then get knn graph for other nodes CA_coord = af2_coords[:, 3] with torch.no_grad(): CA_coord = torch.from_numpy(CA_coord) edge_index = radius_graph( x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord, r=radius, loop=loop, max_num_neighbors=af2_coords.shape[0] + 1, num_workers=NUM_THREADS, ).detach().cpu().numpy() # filter edge_index so that only center nodes are kept edge_index_radius = edge_index[:, np.isin(edge_index[0], center_nodes)] # next get knn graph for other nodes edge_index = knn_graph( x=CA_coord.to(f'cuda:{gpu_id}') if gpu_id is not None and torch.cuda.is_available() else CA_coord, loop=loop, k=max_neighbors, num_workers=NUM_THREADS, ).detach().cpu().numpy() del CA_coord # only keep nodes that are in the radius graph edge_index = edge_index[:, np.isin(edge_index[0], edge_index_radius.flatten()) & np.isin(edge_index[1], edge_index_radius.flatten())] return edge_index def get_graphs_from_neighbor(af2_coords, max_neighbors=None, loop=False): nodes = af2_coords.shape[0] if max_neighbors is None: # full graph max_neighbors = nodes + 1 edge_graph = np.ones((nodes, nodes)) # fill upper triangle with 0 edge_graph *= np.tri(nodes, k=int(np.floor(max_neighbors / 2))) \ * np.tri(nodes, k=int(np.floor(max_neighbors / 2))).T edge_index = np.array(np.where(edge_graph == 1)) if not loop: edge_index = edge_index[:, edge_index[0] != edge_index[1]] return edge_index def get_embedding_from_esm2(protein, check_mode=True, seq_start=None, seq_end=None): if isinstance(protein, str): file_path = f"{ESM_DATA_PATH}/{protein}.representations.layer.48.npy" if os.path.exists(file_path): if check_mode: return True wt_orig = np.load(file_path) # TODO: I am removing the and tokens, not sure if this is correct batch_tokens = wt_orig[max(0, seq_start): min(wt_orig.shape[0] - 1, seq_end + 1)] else: if check_mode: return False batch_tokens = np.zeros([seq_end - seq_start + 1, 5120 if ESM_MODEL_SIZE == "15B" else 1280]) elif isinstance(protein, np.ndarray): batch_tokens = protein[max(0, seq_start): min(protein.shape[0] - 1, seq_end + 1)] else: raise ValueError("protein must be either a string of uniprotID or a numpy array") return batch_tokens def get_esm_dict_from_uniprot(uniprotID): file_path = f"{ESM_DATA_PATH}/{uniprotID}.representations.layer.48.npy" wt_orig = np.load(file_path) return wt_orig def get_af2_single_rep_dict_from_prefix(uniprotID_prefix, filter=False): # sometimes colabfold will padding the results, we need to remove the padding file_path = f"{uniprotID_prefix}_single_repr_rank_001_alphafold2_ptm_model_1_seed_000.npy" wt_orig = np.load(file_path) # padding_length = 0 # last_i = 1 # while np.all(wt_orig[-last_i-1] == wt_orig[-last_i]): # # remove the last line if it is the same as the second last line # last_i -= 1 # padding_length += 1 # if padding_length > 0: # wt_orig = wt_orig[:-(padding_length+1)] return wt_orig def get_af2_pairwise_rep_dict_from_prefix(uniprotID_prefix): file_path = f"{uniprotID_prefix}_pair_repr_rank_001_alphafold2_ptm_model_1_seed_000.npy" wt_orig = np.load(file_path) # padding_length = 0 # last_i = 1 # while np.all(wt_orig[-last_i-1] == wt_orig[-last_i]): # # remove the last line if it is the same as the second last line # last_i -= 1 # padding_length += 1 return wt_orig def get_embedding_from_esm1b(protein, check_mode=True, seq_start=None, seq_end=None): if isinstance(protein, str): file_path = f"/share/vault/Users/gz2294/Data/DMS/ClinVar.HGMD.PrimateAI.syn/esm1b.embedding.uniprotIDs/{protein}.representations.layer.48.npy" if os.path.exists(file_path): if check_mode: return True wt_orig = np.load(file_path) # TODO: I am removing the and tokens, not sure if this is correct batch_tokens = wt_orig[max(0, seq_start): min(wt_orig.shape[0] - 1, seq_end + 1)] else: if check_mode: return False batch_tokens = np.zeros([seq_end - seq_start + 1, 5120 if ESM_MODEL_SIZE == "15B" else 1280]) elif isinstance(protein, np.ndarray): batch_tokens = protein[max(0, seq_start): min(protein.shape[0] - 1, seq_end + 1)] else: raise ValueError("protein must be either a string of uniprotID or a numpy array") return batch_tokens def get_embedding_from_onehot(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, return_onehot_mat=False): if aa_dict is None: idx = [AA_DICT.index(aa) for aa in seq] protein = np.eye(len(AA_DICT))[idx] one_hot_mat = np.eye(len(AA_DICT)) else: idx = [aa_dict.index(aa) for aa in seq] protein = np.eye(len(aa_dict))[idx] one_hot_mat = np.eye(len(aa_dict)) if seq_start is not None and seq_end is not None: batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)] else: batch_tokens = protein if return_idx: if return_onehot_mat: return batch_tokens, np.array(idx), one_hot_mat else: return batch_tokens, np.array(idx) else: if return_onehot_mat: return batch_tokens, one_hot_mat else: return batch_tokens def get_embedding_from_esm_onehot(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, return_onehot_mat=False): if aa_dict is None: idx = [ESM_TOKENS.index('')] + [ESM_TOKENS.index(aa) for aa in seq] + [ESM_TOKENS.index('')] # directly return idxs but not one-hot matrix protein = np.array(idx) else: idx = [aa_dict.index(aa) for aa in seq] protein = np.array(idx) if seq_start is not None and seq_end is not None: batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)] else: batch_tokens = protein if return_idx: if return_onehot_mat: return batch_tokens, np.array(idx), None else: return batch_tokens, np.array(idx) else: if return_onehot_mat: return batch_tokens, None else: return batch_tokens def get_embedding_from_5dim(seq, seq_start=None, seq_end=None): protein = np.array([AA_5DIM_EMBED[aa] for aa in seq]) if seq_start is not None and seq_end is not None: batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)] else: batch_tokens = protein return batch_tokens def get_embedding_from_onehot_nonzero(seq, seq_start=None, seq_end=None, return_idx=False, aa_dict=None, min_prob=0.001, return_onehot_mat=False): if aa_dict is None: aa_dict = AA_DICT one_hot_mat = np.eye(len(aa_dict)) n_special_tok = 0 for special_tok in ['', '']: if special_tok in aa_dict: one_hot_mat[aa_dict.index(special_tok), :] = -1 one_hot_mat[:, aa_dict.index(special_tok)] = -1 one_hot_mat[aa_dict.index(special_tok), aa_dict.index(special_tok)] = 2 n_special_tok += 1 one_hot_mat[one_hot_mat == 0] = min_prob one_hot_mat[one_hot_mat == 1] = 1 - min_prob * (len(aa_dict) - n_special_tok) one_hot_mat[one_hot_mat == -1] = 0 one_hot_mat[one_hot_mat == 2] = 1 idx = [aa_dict.index(aa) for aa in seq] protein = one_hot_mat[idx] if seq_start is not None and seq_end is not None: batch_tokens = protein[max(0, seq_start - 1): min(protein.shape[0], seq_end)] else: batch_tokens = protein if return_idx: if return_onehot_mat: return batch_tokens, np.array(idx), one_hot_mat else: return batch_tokens, np.array(idx) else: if return_onehot_mat: return batch_tokens, one_hot_mat else: return batch_tokens # TODO: conservation should only from 1:21, not 1:41 def get_conservation_from_msa(mutation: Mutation, check_mode=False): transcript = mutation.transcript_id seq = mutation.seq seq_start = mutation.seq_start_orig seq_end = mutation.seq_end_orig if seq_start is None: seq_start = 1 if seq_end is None: seq_end = len(seq) msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU')) if not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'): matched_line = False else: with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file: msa_mat = pickle.load(file) msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)]) if mutation.crop: msa_seq = msa_seq[mutation.seq_start -1:mutation.seq_end] matched_line = msa_seq == seq if matched_line: if check_mode: return True # 1:20 is conservation from hhblits, 21:41 is conservation from compara conservation = msa_mat[seq_start - 1:seq_end, 1:41] else: if check_mode: return False conservation = np.zeros([seq_end - seq_start + 1, 40]) if mutation.crop: conservation = conservation[mutation.seq_start -1:mutation.seq_end] return conservation def get_msa_dict_from_transcript_archive(transcript): msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU')) if pd.isna(transcript) or not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'): msa_seq = '' conservation = np.zeros([0, 20]) msa = np.zeros([0, 200]) else: with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file: msa_mat = pickle.load(file) msa_seq = ''.join(msa_alphabet[msa_mat[:, 0].astype(int)]) conservation = msa_mat[:, 1:21] msa = msa_mat[:, 21:221] return msa_seq, conservation, msa def get_msa_dict_from_transcript(uniprotID): msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU')) if pd.isna(uniprotID) or not os.path.exists(f'{MSA_DATA_PATH}/{uniprotID}_MSA.npy'): msa_seq = '' conservation = np.zeros([0, 20]) msa = np.zeros([0, 199]) else: msa_mat = np.load(f'{MSA_DATA_PATH}/{uniprotID}_MSA.npy') msa_seq = ''.join(msa_alphabet[msa_mat[:, 0].astype(int)]) conservation = np.eye(21)[msa_mat.astype(int)].mean(axis=1)[:, :20] msa = msa_mat return msa_seq, conservation, msa def get_confidence_from_af2file(af2file, pLDDT): uniprotID = af2file.split('/')[-1].split('.')[0].split('-model')[0] if pd.isna(uniprotID) or not os.path.exists(f'{PAE_DATA_PATH}/{uniprotID[3:6]}/{uniprotID}-predicted_aligned_error_v4.json.gz'): # if PAE does not exist, use pLDDT # pae = (pLDDT[None, :] + pLDDT[:, None]) / 200 if not pLDDT is None else None pae = (200 - pLDDT[None, :] - pLDDT[:, None]) / 4 if not pLDDT is None else None else: with gzip.open(f'{PAE_DATA_PATH}/{uniprotID[3:6]}/{uniprotID}-predicted_aligned_error_v4.json.gz', 'rt') as f: pae = json.load(f) # pae = np.exp(-0.08*np.array(pae[0]['predicted_aligned_error'])) pae = np.array(pae[0]['predicted_aligned_error']) return pae def get_msa(mutation: Mutation, check_mode=False): transcript = mutation.transcript_id seq = mutation.seq seq_start = mutation.seq_start_orig seq_end = mutation.seq_end_orig if seq_start is None: seq_start = 1 if seq_end is None: seq_end = len(seq) msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU')) if not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle'): matched_line = False else: with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file: msa_mat = pickle.load(file) msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)]) if mutation.crop: msa_seq = msa_seq[mutation.seq_start -1:mutation.seq_end] matched_line = msa_seq == seq if matched_line: if check_mode: return True # 1:20 is conservation from hhblits, 1:21 is conservation from compara msa = msa_mat[seq_start - 1:seq_end, 21:221] else: if check_mode: return False msa = np.zeros([seq_end - seq_start + 1, 200]) if mutation.crop: msa = msa[mutation.seq_start -1:mutation.seq_end] return msa def get_logits_from_esm2(protein, check_mode=True, seq_start=None, seq_end=None): if isinstance(protein, str): file_path = f"{ESM_DATA_PATH}/{protein}.logits.npy" if os.path.exists(file_path): if check_mode: return True wt_orig = np.load(file_path) # TODO: I am removing the and tokens, not sure if this is correct batch_tokens = wt_orig[max(0, seq_start): min(wt_orig.shape[0] - 1, seq_end + 1)] else: if check_mode: return False batch_tokens = np.zeros([seq_end - seq_start + 1, 32]) elif isinstance(protein, np.ndarray): batch_tokens = protein[max(0, seq_start): min(protein.shape[0] - 1, seq_end + 1)] else: raise ValueError("protein must be either a string of uniprotID or a numpy array") return batch_tokens def get_attn_from_msa(transcript, seq, check_mode=False, seq_start=None, seq_end=None): NUM_LAYERS = 6 msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU')) if isinstance(transcript, str): if pd.isna(transcript) \ or not os.path.exists(f'{MSA_DATA_PATH}/{transcript}.pickle') \ or not os.path.exists(f'{MSA_ATTN_DATA_PATH}/{transcript}.row_attentions.pt'): matched_line = False else: with open(os.path.join(MSA_DATA_PATH, transcript + '.pickle'), 'rb') as file: msa_mat = pickle.load(file) if seq_start is None: seq_start = 1 if seq_end is None: seq_end = len(seq) msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)]) matched_line = msa_seq == seq if matched_line: if check_mode: return True msa_row_attns = torch.load( os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')).detach().numpy() msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy() # R file parse seq_start starting from 1, so we need to minus 1 # only use last 6 attn layers msa_row_attns = msa_row_attns[:, (12 - NUM_LAYERS):, :, seq_start - 1:seq_end, seq_start - 1:seq_end] msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end] msa_pairwise = np.concatenate([msa_row_attns.reshape(-1, msa_row_attns.shape[-2], msa_row_attns.shape[-1]), msa_contacts], axis=0).transpose((1, 2, 0)) else: if check_mode: return False msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, NUM_LAYERS * 12 + 1]) elif isinstance(transcript, tuple): msa_row_attns = transcript[0] msa_contacts = transcript[1] if msa_row_attns is not None and msa_contacts is not None: msa_row_attns = msa_row_attns[:, (12 - NUM_LAYERS):, :, seq_start - 1:seq_end, seq_start - 1:seq_end] msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end] msa_pairwise = np.concatenate([msa_row_attns.reshape(-1, msa_row_attns.shape[-2], msa_row_attns.shape[-1]), msa_contacts], axis=0).transpose((1, 2, 0)) else: msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, NUM_LAYERS * 12 + 1]) else: raise ValueError("transcript must be either a string of transcriptID" " or a tuple of msa_row_attns and msa_contacts") return msa_pairwise def get_contacts_from_msa(mutation: Mutation, check_mode=False): transcript = mutation.transcript_id seq = mutation.seq seq_start = mutation.seq_start seq_end = mutation.seq_end msa_alphabet = np.array(list('ACDEFGHIKLMNPQRSTVWYU')) if pd.isna(transcript) \ or not os.path.exists(f'{MSA_DATA_PATH_ARCHIVE}/{transcript}.pickle') \ or not os.path.exists(f'{MSA_ATTN_DATA_PATH}/{transcript}.contacts.pt'): matched_line = False else: with open(os.path.join(MSA_DATA_PATH_ARCHIVE, transcript + '.pickle'), 'rb') as file: msa_mat = pickle.load(file) if seq_start is None: seq_start = 1 if seq_end is None: seq_end = len(seq) msa_seq = ''.join(msa_alphabet[msa_mat[seq_start - 1:seq_end, 0].astype(int)]) matched_line = msa_seq == seq if matched_line: if check_mode: return True msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy() # R file parse seq_start starting from 1, so we need to minus 1 msa_contacts = msa_contacts[:, seq_start - 1:seq_end, seq_start - 1:seq_end] msa_pairwise = msa_contacts.transpose((1, 2, 0)) else: # no esm_msa file, try esm2 predicted contacts instead if not os.path.exists(f'{ESM_DATA_PATH}/{mutation.ESM_prefix}.contacts.npy'): if check_mode: return False msa_pairwise = np.zeros([seq_end - seq_start + 1, seq_end - seq_start + 1, 1]) else: if check_mode: return True msa_pairwise = np.load(f'{ESM_DATA_PATH}/{mutation.ESM_prefix}.contacts.npy') msa_pairwise = np.expand_dims(msa_pairwise[seq_start - 1:seq_end, seq_start - 1:seq_end], axis=2) return msa_pairwise # unused def get_contacts_from_msa_by_identifier(identifier): str_split = identifier.split(":") transcript = str_split[0] seq = str_split[1] seq_start = int(str_split[2]) seq_end = int(str_split[3]) check_mode = False return get_contacts_from_msa(transcript, seq, check_mode, seq_start, seq_end) # unused def load_embedding_from_esm2(protein): file_path = f"{ESM_DATA_PATH}/{protein}.representations.layer.48.npy" assert os.path.exists(file_path) return np.load(file_path) # unused def load_logits_from_esm2(protein): file_path = f"{ESM_DATA_PATH}/{protein}.logits.npy" assert os.path.exists(file_path) return np.load(file_path) # unused def load_attn_from_msa(transcript): if os.path.exists(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')) and \ os.path.exists(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')): msa_row_attns = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.row_attentions.pt')).detach().numpy() msa_contacts = torch.load(os.path.join(MSA_ATTN_DATA_PATH, transcript + '.contacts.pt')).detach().numpy() return msa_row_attns, msa_contacts else: return None, None def _test_load(): test_file = pd.read_csv('/share/terra/Users/gz2294/ld1/Data/DMS/ClinVar.HGMD.PrimateAI.syn/training.csv', index_col=0) # idx = np.where(test_file.uniprotID == 'Q8WZ42')[0][0] idx = np.where(test_file['sequence.len.orig'] == 4753)[0][0] point_mutation = get_mutations(test_file['uniprotID'].iloc[idx], test_file['ENST'].iloc[idx], test_file['wt.orig'].iloc[idx], test_file['sequence.len.orig'].iloc[idx], test_file['pos.orig'].iloc[idx], test_file['ref'].iloc[idx], test_file['alt'].iloc[idx]) coords = get_coords_from_af2(point_mutation.af2_file) CA_coord = coords[:, 3] embed_data = get_embedding_from_esm2(point_mutation.uniprot_id, False, point_mutation.seq_start, point_mutation.seq_end) # prepare edge features coev_strength = get_attn_from_msa(point_mutation.transcript_id, point_mutation.seq, False, point_mutation.seq_start, point_mutation.seq_end) edge_index = np.indices((coords.shape[0], coords.shape[0])).reshape(2, -1) # cancel self-edges edge_index = edge_index[:, edge_index[0] != edge_index[1]] edge_attr = coev_strength[edge_index[0], edge_index[1], :] # prepare node vector features CA_CB = coords[:, [4]] - coords[:, [3]] CA_C = coords[:, [1]] - coords[:, [3]] CA_O = coords[:, [2]] - coords[:, [3]] CA_N = coords[:, [0]] - coords[:, [3]] nodes_vector = np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1) # prepare graph features = dict( pos=torch.from_numpy(CA_coord), x=torch.from_numpy(embed_data), edge_index=torch.from_numpy(edge_index), edge_attr=torch.from_numpy(edge_attr).to(torch.float), node_vec_attr=torch.from_numpy(nodes_vector).transpose(1, 2) ) from torch_geometric.data import Data map_data = Data(**features) return map_data if __name__ == '__main__': print(_test_load())