PreMode / data /Data.py
gzhong's picture
Upload folder using huggingface_hub
7718235 verified
from typing import Literal
import warnings
import time
import numpy as np
import pandas as pd
import torch
import torch.utils.data
from torch.utils.data import Dataset as TorchDataset
from torch_geometric.data import Dataset, Data
from torch_geometric.data.data import BaseData
from torch_geometric.utils import remove_isolated_nodes
from itertools import cycle
from multiprocessing import Pool
from multiprocessing import get_context
from typing import Any, List
import data.utils as utils
import h5py
import lmdb
import pickle
from datetime import datetime
import os
NUM_THREADS = 42
# Main Abstract Class, define a Mutation Dataset, compatible with PyTorch Geometric
class GraphMutationDataset(Dataset):
"""
MutationDataSet dataset, input a file of mutations, output a star graph and KNN graph
Can be either single mutation or multiple mutations.
Args:
data_file (string or pd.DataFrame): Path or pd.DataFrame for a csv file for a list of mutations
data_type (string): Type of this data, 'ClinVar', 'DMS', etc
"""
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = None,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim', 'esm1b'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
scale_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_sidechain: bool = False,
local_coord_transform: bool = False,
use_cb: bool = False,
add_msa_contacts: bool = True,
add_dssp: bool = False,
add_msa: bool = False,
add_confidence: bool = False,
loaded_confidence: bool = False,
loaded_esm: bool = False,
add_ptm: bool = False,
data_augment: bool = False,
score_transfer: bool = False,
alt_type: Literal['alt', 'concat', 'diff', 'zero', 'orig'] = 'alt',
computed_graph: bool = True,
loaded_msa: bool = False,
neighbor_type: Literal['KNN', 'radius', 'radius-KNN'] = 'KNN',
max_len = 2251,
add_af2_single: bool = False,
add_af2_pairwise: bool = False,
loaded_af2_single: bool = False,
loaded_af2_pairwise: bool = False,
use_lmdb: bool = False,
):
super(GraphMutationDataset, self).__init__()
if isinstance(data_file, pd.DataFrame):
self.data = data_file
self.data_file = 'pd.DataFrame'
elif isinstance(data_file, str):
try:
self.data = pd.read_csv(data_file, index_col=0, low_memory=False)
except UnicodeDecodeError:
self.data = pd.read_csv(data_file, index_col=0, encoding='ISO-8859-1')
self.data_file = data_file
else:
raise ValueError("data_path must be a string or a pandas.DataFrame")
self.data_type = data_type
self._y_columns = self.data.columns[self.data.columns.str.startswith('score')]
self._y_mask_columns = self.data.columns[self.data.columns.str.startswith('confidence.score')]
self.node_embedding_type = node_embedding_type
self.graph_type = graph_type
self.neighbor_type = neighbor_type
self.add_plddt = add_plddt
self.scale_plddt = scale_plddt
self.add_conservation = add_conservation
self.add_position = add_position
self.use_cb = use_cb
self.add_sidechain = add_sidechain
self.add_msa_contacts = add_msa_contacts
self.add_dssp = add_dssp
self.add_msa = add_msa
self.add_af2_single = add_af2_single
self.add_af2_pairwise = add_af2_pairwise
self.loaded_af2_single = loaded_af2_single
self.loaded_af2_pairwise = loaded_af2_pairwise
self.add_confidence = add_confidence
self.loaded_confidence = loaded_confidence
self.add_ptm = add_ptm
self.loaded_msa = loaded_msa
self.loaded_esm = loaded_esm
self.alt_type = alt_type
self.max_len = max_len
self.loop = loop
self.data_augment = data_augment
# initialize some dicts
self.af2_file_dict = None
self.af2_coord_dict = None
self.af2_plddt_dict = None
self.af2_confidence_dict = None
self.af2_dssp_dict = None
self.af2_graph_dict = None
self.esm_file_dict = None
self.esm_dict = None
self.msa_file_dict = None
self.msa_dict = None
self._check_embedding_files()
if score_transfer:
# only do score_transfer when score is 0 or 1
if set(self.data['score'].unique()) <= {0, 1}:
self.data['score'] = self.data['score'] * 3
else:
warnings.warn("score_transfer is only applied when score is 0 or 1")
if data_augment and set(self.data['score'].unique()) > {0, 1}:
# reverse ref and alt and score, only when we do gof/lof
reverse_data = self.data.copy()
# reverse only for score == 1 and score == 0
reverse_data = reverse_data.loc[(reverse_data['score'] == 1) | (reverse_data['score'] == 0), :]
reverse_data['ref'] = self.data['alt']
reverse_data['alt'] = self.data['ref']
reverse_data['score'] = -reverse_data['score']
self.data = pd.concat([self.data, reverse_data], ignore_index=True)
self._set_mutations()
self.computed_graph = computed_graph
self._load_af2_features(radius=radius, max_neighbors=max_neighbors, loop=loop, gpu_id=gpu_id)
if (self.add_msa or self.add_conservation) and self.loaded_msa:
self._load_msa_features()
if self.loaded_esm:
self._load_esm_features()
if self.loaded_af2_pairwise or self.loaded_af2_single:
self._load_af2_reps()
self._set_node_embeddings()
self._set_edge_embeddings()
self.unmatched_msa = 0
# shuffle the data
if shuffle:
np.random.seed(0)
shuffle_index = np.random.permutation(len(self.mutations))
self.data = self.data.iloc[shuffle_index].reset_index(drop=True)
self.mutations = list(map(self.mutations.__getitem__, shuffle_index))
if self.add_ptm:
self.ptm_ref = pd.read_csv('./data.files/ptm.small.csv', index_col=0)
self.get_method = 'default'
# if your machine has sufficient memory, you can uncomment the following line
# self.load_all_to_memory()
def _check_embedding_files(self):
print(f"read in {len(self.data)} mutations from {self.data_file}")
# scan uniprot files and transcript files to check if they exist
unique_data = self.data.drop_duplicates(subset=['uniprotID'])
print(f"found {len(unique_data)} unique wt sequences")
# only check embeddings if we are using esm
if self.node_embedding_type == 'esm':
with Pool(NUM_THREADS) as p:
embedding_exist = p.starmap(utils.get_embedding_from_esm2, zip(unique_data['uniprotID'], cycle([True])))
# msa_exist = p.starmap(get_attn_from_msa, zip(unique_data['ENST'], unique_data['wt.orig'], cycle([True])))
# TODO: check MSA again, consider using raw MSA only
to_drop = unique_data['wt.orig'].loc[~np.array(embedding_exist, dtype=bool)]
print(f"drop {np.sum(self.data['wt.orig'].isin(to_drop))} mutations that do not have embedding or msa")
self.data = self.data[~self.data['wt.orig'].isin(to_drop)]
else:
print(f"skip checking embedding files for {self.node_embedding_type}")
def _set_mutations(self):
if 'af2_file' not in self.data.columns:
self.data['af2_file'] = pd.NA
with Pool(NUM_THREADS) as p:
point_mutations = p.starmap(utils.get_mutations, zip(self.data['uniprotID'],
self.data['ENST'] if 'ENST' in self.data.columns else cycle([None]),
self.data['wt.orig'],
self.data['sequence.len.orig'],
self.data['pos.orig'],
self.data['ref'],
self.data['alt'],
cycle([self.max_len]),
self.data['af2_file'] if 'af2_file' in self.data.columns else cycle([None]),))
# drop the data that does not have coordinates if we are using af2
print(f"drop {np.sum(~np.array(point_mutations, dtype=bool))} mutations that don't have coordinates")
self.data = self.data.loc[np.array(point_mutations, dtype=bool)]
self.mutations = list(filter(bool, point_mutations))
print(f'Finished loading {len(self.mutations)} mutations')
def _load_af2_features(self, radius, max_neighbors, loop, gpu_id):
self.af2_file_dict, mutation_idx = np.unique([mutation.af2_file for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_af2_seq_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
self.af2_coord_dict = p.starmap(utils.get_coords_from_af2, zip(self.af2_file_dict, cycle([self.add_sidechain])))
print(f'Finished loading {len(self.af2_coord_dict)} af2 coords')
self.af2_plddt_dict = p.starmap(utils.get_plddt_from_af2, zip(self.af2_file_dict)) if self.add_plddt else None
print(f'Finished loading plddt')
self.af2_confidence_dict = p.starmap(utils.get_confidence_from_af2file, zip(self.af2_file_dict, self.af2_plddt_dict)) if self.add_plddt and self.add_confidence and self.loaded_confidence else None
print(f'Finished loading confidence')
self.af2_dssp_dict = p.starmap(utils.get_dssp_from_af2, zip(self.af2_file_dict)) if self.add_dssp else None
print(f'Finished loading dssp')
if self.computed_graph:
if self.graph_type == 'af2':
if self.neighbor_type == 'KNN':
self.af2_graph_dict = list(map(utils.get_knn_graphs_from_af2, self.af2_coord_dict,
cycle([radius]), cycle([max_neighbors]), cycle([loop]), cycle([gpu_id])))
print(f'Finished constructing {len(self.af2_graph_dict)} af2 graphs')
else:
# if radius graph, don't compute until needed
self.computed_graph = False
print(f'Do not construct graphs from af2 files to save RAM')
elif self.graph_type == '1d-neighbor':
self.af2_graph_dict = list(map(utils.get_graphs_from_neighbor, self.af2_coord_dict,
cycle([max_neighbors]), cycle([loop])))
print(f'Finished constructing {len(self.af2_graph_dict)} af2 graphs')
else:
print(f'Do not construct graphs from af2 files to save RAM')
self.radius = radius
self.max_neighbors = max_neighbors
self.loop = loop
self.gpu_id = gpu_id
def _load_esm_features(self):
self.esm_file_dict, mutation_idx = np.unique([mutation.ESM_prefix for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_esm_seq_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
self.esm_dict = p.starmap(utils.get_esm_dict_from_uniprot, zip(self.esm_file_dict))
print(f'Finished loading {len(self.esm_file_dict)} esm embeddings')
def _load_af2_reps(self):
self.af2_rep_file_prefix_dict, mutation_idx = np.unique([mutation.af2_rep_file_prefix for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_af2_rep_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
if self.add_af2_single and self.loaded_af2_single:
self.af2_single_dict = p.starmap(utils.get_af2_single_rep_dict_from_prefix, zip(self.af2_rep_file_prefix_dict))
print(f'Finished loading {len(self.af2_rep_file_prefix_dict)} alphafold2 single representations')
# because the pairwise representation is too large to fit in RAM, we have to select a subset of them
if self.add_af2_pairwise and self.loaded_af2_pairwise:
raise ValueError("Not implemented in this version")
def _load_msa_features(self):
self.msa_file_dict, mutation_idx = np.unique([mutation.uniprot_id for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_msa_seq_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
# msa_dict: msa_seq, conservation, msa
self.msa_dict = p.starmap(utils.get_msa_dict_from_transcript, zip(self.msa_file_dict))
print(f'Finished loading {len(self.msa_dict)} msa seqs')
def _set_node_embeddings(self):
pass
def _set_edge_embeddings(self):
pass
def get_mask(self, mutation: utils.Mutation):
return mutation.pos - 1, mutation
def get_graph_and_mask(self, mutation: utils.Mutation):
# get the ordinary graph
coords: np.ndarray = self.af2_coord_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if self.computed_graph:
edge_index = self.af2_graph_dict[mutation.af2_seq_index] # 2, E
else:
if self.graph_type == 'af2':
if self.neighbor_type == 'KNN':
edge_index = utils.get_knn_graphs_from_af2(coords, self.radius, self.max_neighbors, self.loop, self.gpu_id)
elif self.neighbor_type == 'radius':
edge_index = utils.get_radius_graphs_from_af2(coords, self.radius, self.loop, self.gpu_id)
# delete nodes that are not connected with variant node.
connected_nodes = edge_index[:, np.isin(edge_index[0], mutation.pos - 1)].flatten()
edge_index = edge_index[:, np.isin(edge_index[0], connected_nodes) | np.isin(edge_index[1], connected_nodes)]
else:
edge_index = utils.get_radius_knn_graphs_from_af2(coords, mutation.pos - 1, self.radius, self.max_neighbors, self.loop)
elif self.graph_type == '1d-neighbor':
edge_index = utils.get_graphs_from_neighbor(coords, self.max_neighbors, self.loop)
# remember we could have cropped sequence
if mutation.crop:
coords = coords[mutation.seq_start - 1:mutation.seq_end, :]
edge_index = edge_index[:, (edge_index[0, :] >= mutation.seq_start - 1) &
(edge_index[1, :] >= mutation.seq_start - 1) &
(edge_index[0, :] < mutation.seq_end) &
(edge_index[1, :] < mutation.seq_end)]
edge_index[0, :] -= mutation.seq_start - 1
edge_index[1, :] -= mutation.seq_start - 1
# get the mask
mask_idx, mutation = self.get_mask(mutation)
# star graph of other positions to variant sites and reverse
edge_matrix_star = np.zeros((coords.shape[0], coords.shape[0]))
edge_matrix_star[:, mask_idx] = 1
edge_matrix_star[mask_idx, :] = 1
edge_index_star = np.array(np.where(edge_matrix_star == 1))
# if radius graph, only keep the edges of nodes in the edge_index
if self.neighbor_type == 'radius' or self.neighbor_type == 'KNN':
edge_index_star = edge_index_star[:, np.isin(edge_index_star[0], edge_index.flatten()) &
np.isin(edge_index_star[1], edge_index.flatten())]
elif self.neighbor_type == 'radius-KNN':
edge_index_star = edge_index_star[:, np.isin(edge_index_star[0], np.concatenate((edge_index.flatten(), mask_idx))) &
np.isin(edge_index_star[1], np.concatenate((edge_index.flatten(), mask_idx)))]
# cancel self loop
if not self.loop:
edge_index_star = edge_index_star[:, edge_index_star[0] != edge_index_star[1]]
if self.add_msa_contacts:
coevo_strength = utils.get_contacts_from_msa(mutation, False)
if isinstance(coevo_strength, int):
coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
mutation.seq_end - mutation.seq_start + 1, 1])
else:
coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
mutation.seq_end - mutation.seq_start + 1, 0])
start = time.time()
if self.add_af2_pairwise:
if self.loaded_af2_pairwise:
# we don't use the self.af2_pair_dict anymore because it won't fit in RAM
# we load from lmdb
byteflow = self.af2_pairwise_txn.get(u'{}'.format(mutation.af2_rep_file_prefix.split('/')[-1]).encode('ascii'))
pairwise_rep = pickle.loads(byteflow)
if pairwise_rep is None:
pairwise_rep = utils.get_af2_pairwise_rep_dict_from_prefix(mutation.af2_rep_file_prefix)
else:
pairwise_rep = utils.get_af2_pairwise_rep_dict_from_prefix(mutation.af2_rep_file_prefix)
# crop the pairwise_rep, if necessary
if mutation.af2_rep_file_prefix.find('-F') == -1:
pairwise_rep = pairwise_rep[mutation.seq_start_orig - 1: mutation.seq_end_orig,
mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
pairwise_rep = pairwise_rep[mutation.seq_start - 1: mutation.seq_end,
mutation.seq_start - 1: mutation.seq_end]
coevo_strength = np.concatenate([coevo_strength, pairwise_rep], axis=2)
end = time.time()
print(f'Finished loading pairwise in {end - start:.2f} seconds')
edge_attr = coevo_strength[edge_index[0], edge_index[1], :]
edge_attr_star = coevo_strength[edge_index_star[0], edge_index_star[1], :]
# if add positional embedding, add it here
if self.add_position:
# add a sin positional embedding that reflects the relative position of the residue
edge_attr = np.concatenate(
(edge_attr, np.sin(np.pi / 2 * (edge_index[1] - edge_index[0]) / self.max_len).reshape(-1, 1)),
axis=1)
edge_attr_star = np.concatenate(
(edge_attr_star, np.sin(np.pi / 2 * (edge_index_star[1] - edge_index_star[0]) / self.max_len).reshape(-1, 1)),
axis=1)
return coords, edge_index, edge_index_star, edge_attr, edge_attr_star, mask_idx, mutation
def get_one_mutation(self, idx):
mutation: utils.Mutation = self.mutations[idx]
# get the graph
coords, edge_index, edge_index_star, edge_attr, edge_attr_star, mask_idx, mutation = self.get_graph_and_mask(mutation)
# get embeddings
if self.node_embedding_type == 'esm':
if self.loaded_esm:
embed_data = utils.get_embedding_from_esm2(self.esm_dict[mutation.esm_seq_index], False,
mutation.seq_start, mutation.seq_end)
else:
embed_data = utils.get_embedding_from_esm2(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
to_alt = np.concatenate([utils.ESM_AA_EMBEDDING_DICT[alt_aa].reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([utils.ESM_AA_EMBEDDING_DICT[ref_aa].reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'one-hot-idx':
assert not self.add_conservation and not self.add_plddt
embed_logits, embed_data, one_hot_mat = utils.get_embedding_from_onehot_nonzero(mutation.seq, return_idx=True, return_onehot_mat=True)
to_alt = np.concatenate([np.array(utils.AA_DICT.index(alt_aa)).reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([np.array(utils.AA_DICT.index(ref_aa)).reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'one-hot':
embed_data, one_hot_mat = utils.get_embedding_from_onehot(mutation.seq, return_idx=False, return_onehot_mat=True)
to_alt = np.concatenate([np.eye(len(utils.AA_DICT))[utils.AA_DICT.index(alt_aa)].reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([np.eye(len(utils.AA_DICT))[utils.AA_DICT.index(ref_aa)].reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'aa-5dim':
embed_data = utils.get_embedding_from_5dim(mutation.seq)
to_alt = np.concatenate([np.array(utils.AA_5DIM_EMBED[alt_aa]).reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([np.array(utils.AA_5DIM_EMBED[ref_aa]).reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'esm1b':
embed_data = utils.get_embedding_from_esm1b(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
to_alt = np.concatenate([utils.ESM1b_AA_EMBEDDING_DICT[alt_aa].reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([utils.ESM1b_AA_EMBEDDING_DICT[ref_aa].reshape(1, -1) for ref_aa in mutation.ref_aa])
if self.alt_type == "zero":
to_alt = np.zeros_like(to_alt)[[0]]
# add conservation, if needed
if self.loaded_msa and (self.add_msa or self.add_conservation):
msa_seq = self.msa_dict[mutation.msa_seq_index][0]
conservation_data = self.msa_dict[mutation.msa_seq_index][1]
msa_data = self.msa_dict[mutation.msa_seq_index][2]
else:
if self.add_conservation or self.add_msa:
msa_seq, conservation_data, msa_data = utils.get_msa_dict_from_transcript(mutation.uniprot_id)
if self.add_conservation:
if conservation_data.shape[0] == 0:
conservation_data = np.zeros((embed_data.shape[0], 20))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
conservation_data = conservation_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
conservation_data = conservation_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
self.unmatched_msa += 1
print(f'Unmatched MSA: {self.unmatched_msa}')
conservation_data = np.zeros((embed_data.shape[0], 20))
embed_data = np.concatenate([embed_data, conservation_data], axis=1)
to_alt = np.concatenate([to_alt, conservation_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, conservation_data[mask_idx]], axis=1)
# add pLDDT, if needed
if self.add_plddt:
# get plddt
plddt_data = self.af2_plddt_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if mutation.crop:
plddt_data = plddt_data[mutation.seq_start - 1: mutation.seq_end]
if self.add_confidence:
confidence_data = plddt_data / 100
if plddt_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {plddt_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
plddt_data = np.ones_like(embed_data[:, 0]) * 50
if self.add_confidence:
# assign 0.5 confidence to all points
confidence_data = np.ones_like(embed_data[:, 0]) / 2
if self.scale_plddt:
plddt_data = plddt_data / 100
embed_data = np.concatenate([embed_data, plddt_data[:, None]], axis=1)
to_alt = np.concatenate([to_alt, plddt_data[mask_idx, None]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, plddt_data[mask_idx]], axis=1)
# add dssp, if needed
if self.add_dssp:
# get dssp
dssp_data = self.af2_dssp_dict[mutation.af2_seq_index]
if mutation.crop:
dssp_data = dssp_data[mutation.seq_start - 1: mutation.seq_end]
if dssp_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'DSSP {dssp_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'DSSP file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
dssp_data = np.zeros_like(embed_data[:, 0])
# if dssp_data size axis is 1, add a dimension
if len(dssp_data.shape) == 1:
dssp_data = dssp_data[:, None]
embed_data = np.concatenate([embed_data, dssp_data], axis=1)
to_alt = np.concatenate([to_alt, dssp_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, dssp_data[mask_idx]], axis=1)
if self.add_ptm:
# ptm used to behind msa, moved it here
ptm_data = utils.get_ptm_from_mutation(mutation, self.ptm_ref)
embed_data = np.concatenate([embed_data, ptm_data], axis=1)
to_alt = np.concatenate([to_alt, ptm_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, ptm_data[mask_idx]], axis=1)
if self.add_af2_single:
if self.loaded_af2_single:
single_rep = self.af2_single_dict[mutation.af2_rep_index]
else:
single_rep = utils.get_af2_single_rep_dict_from_prefix(mutation.af2_rep_file_prefix)
# crop the pairwise_rep, if necessary
if mutation.af2_rep_file_prefix.find('-F') == -1:
single_rep = single_rep[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
single_rep = single_rep[mutation.seq_start - 1: mutation.seq_end]
embed_data = np.concatenate([embed_data, single_rep], axis=1)
to_alt = np.concatenate([to_alt, single_rep[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, single_rep[mask_idx]], axis=1)
if self.add_msa:
# msa must be the last feature
if msa_data.shape[0] == 0:
msa_data = np.zeros((embed_data.shape[0], 199))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
msa_data = msa_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
msa_data = msa_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
print(f'Unmatched MSA: {self.unmatched_msa}')
msa_data = np.zeros((embed_data.shape[0], 199))
embed_data = np.concatenate([embed_data, msa_data], axis=1)
if self.alt_type == 'alt' or self.alt_type == 'zero':
to_alt = np.concatenate([to_alt, msa_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, msa_data[mask_idx]], axis=1)
# replace the embedding with the mutation, note pos is 1-based
# but we don't modify the embedding matrix, instead we return a mask matrix
embed_data_mask = np.ones_like(embed_data)
embed_data_mask[mask_idx] = 0
if self.alt_type == 'alt' or self.alt_type == 'zero':
alt_embed_data = np.zeros_like(embed_data)
alt_embed_data[mask_idx] = to_alt
elif self.alt_type == 'concat':
alt_embed_data = np.zeros((embed_data.shape[0], to_alt.shape[1] + to_ref.shape[1]))
alt_embed_data[mask_idx] = np.concatenate([to_alt, to_ref], axis=1)
elif self.alt_type == 'diff':
alt_embed_data = np.zeros_like(embed_data)
alt_embed_data[mask_idx] = to_alt
embed_data[mask_idx] = to_ref
elif self.alt_type == 'orig':
# do nothing
alt_embed_data = embed_data
else:
raise ValueError(f'alt_type {self.alt_type} not supported')
# prepare node vector features
# get CA_coords
CA_coord = coords[:, 3]
CB_coord = coords[:, 4]
# add CB_coord for GLY
CB_coord[np.isnan(CB_coord)] = CA_coord[np.isnan(CB_coord)]
if self.graph_type == '1d-neighbor':
CA_coord[:, 0] = np.arange(coords.shape[0])
CB_coord[:, 0] = np.arange(coords.shape[0])
coords = np.zeros_like(coords)
CA_CB = coords[:, [4]] - coords[:, [3]] # Note that glycine does not have CB
CA_CB[np.isnan(CA_CB)] = 0
# Change the CA_CB of the mutated residue to 0
# but we don't modify the CA_CB matrix, instead we return a mask matrix
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.transpose(np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1), (0, 2, 1))
if self.add_sidechain:
# get sidechain coords
sidechain_nodes_vector = coords[:, 5:] - coords[:, [3]]
sidechain_nodes_vector[np.isnan(sidechain_nodes_vector)] = 0
sidechain_nodes_vector = np.transpose(sidechain_nodes_vector, (0, 2, 1))
nodes_vector = np.concatenate([nodes_vector, sidechain_nodes_vector], axis=2)
# prepare graph
features = dict(
embed_logits=embed_logits if self.node_embedding_type == 'one-hot-idx' else None,
one_hot_mat=one_hot_mat if self.node_embedding_type.startswith('one-hot') else None,
mask_idx=mask_idx,
embed_data=embed_data,
embed_data_mask=embed_data_mask,
alt_embed_data=alt_embed_data,
coords=coords,
CA_coord=CA_coord,
CB_coord=CB_coord,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
nodes_vector=nodes_vector,
)
if self.add_confidence:
# add position wise confidence
if self.add_plddt:
features['plddt'] = confidence_data
if self.loaded_confidence:
pae = self.af2_confidence_dict[mutation.af2_seq_index]
else:
pae = utils.get_confidence_from_af2file(mutation.af2_file, self.af2_plddt_dict[mutation.af2_seq_index])
if mutation.crop:
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
else:
# get plddt
plddt_data = utils.get_plddt_from_af2(mutation.af2_file)
pae = utils.get_confidence_from_af2file(mutation.af2_file, plddt_data)
if mutation.crop:
confidence_data = plddt_data[mutation.seq_start - 1: mutation.seq_end] / 100
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
if confidence_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {confidence_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
confidence_data = np.ones_like(embed_data[:, 0]) * 0.8
features['plddt'] = confidence_data
# add pairwise confidence
features['edge_confidence'] = pae[edge_index[0], edge_index[1]]
features['edge_confidence_star'] = pae[edge_index_star[0], edge_index_star[1]]
return features
def get(self, idx):
features_np = self.get_one_mutation(idx)
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
features = dict(
x=x,
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool),
x_alt=torch.from_numpy(features_np['alt_embed_data']).to(torch.float32),
pos=torch.from_numpy(features_np['CA_coord']).to(torch.float32) if not self.use_cb else torch.from_numpy(features_np['CB_coord']).to(torch.float32),
edge_index=torch.from_numpy(features_np['edge_index']).to(torch.long),
edge_index_star=torch.from_numpy(features_np['edge_index_star']).to(torch.long),
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32),
edge_attr_star=torch.from_numpy(features_np['edge_attr_star']).to(torch.float32),
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32),
y=torch.tensor([self.data[self._y_columns].iloc[int(idx)]]).to(torch.float32),
)
if self.add_confidence:
features['plddt'] = torch.from_numpy(features_np['plddt']).to(torch.float32)
features['edge_confidence'] = torch.from_numpy(features_np['edge_confidence']).to(torch.float32)
features['edge_confidence_star'] = torch.from_numpy(features_np['edge_confidence_star']).to(torch.float32)
if self.neighbor_type == 'radius' or self.neighbor_type == 'radius-KNN':
# first concat edge_index and edge_index_star
concat_edge_index = torch.cat((features["edge_index"], features["edge_index_star"]), dim=1)
concat_edge_attr = torch.cat((features["edge_attr"], features["edge_attr_star"]), dim=0)
# then remove isolated nodes
concat_edge_index, concat_edge_attr, mask = \
remove_isolated_nodes(concat_edge_index, concat_edge_attr, x.shape[0])
# then split edge_index and edge_attr
features["edge_index"] = concat_edge_index[:, :features["edge_index"].shape[1]]
features["edge_index_star"] = concat_edge_index[:, features["edge_index"].shape[1]:]
features["edge_attr"] = concat_edge_attr[:features["edge_attr"].shape[0]]
features["edge_attr_star"] = concat_edge_attr[features["edge_attr"].shape[0]:]
else:
features["edge_index"], features["edge_attr"], mask = \
remove_isolated_nodes(features["edge_index"], features["edge_attr"], x.shape[0])
features["edge_index_star"], features["edge_attr_star"], mask = \
remove_isolated_nodes(features["edge_index_star"], features["edge_attr_star"], x.shape[0])
features["x"] = features["x"][mask]
features["x_mask"] = features["x_mask"][mask]
features["x_alt"] = features["x_alt"][mask]
features["pos"] = features["pos"][mask]
features["node_vec_attr"] = features["node_vec_attr"][mask]
if len(self._y_mask_columns) > 0:
features['score_mask'] = torch.tensor([self.data[self._y_mask_columns].iloc[int(idx)]]).to(torch.float)
return Data(**features)
def get_from_hdf5(self, idx):
if not hasattr(self, 'hdf5_keys') or self.hdf5_file is None:
raise ValueError('hdf5 file is not set')
else:
features = {}
with h5py.File(self.hdf5_file, 'r') as f:
for key in self.hdf5_keys:
features[key] = torch.tensor(f[f'{self.hdf5_idx_map[idx]}/{key}'])
return Data(**features)
def open_lmdb(self):
self.env = lmdb.open(self.lmdb_path, subdir=False,
readonly=True, lock=False,
readahead=False, meminit=False)
self.txn = self.env.begin(write=False, buffers=True)
def get_from_lmdb(self, idx):
if not hasattr(self, 'txn'):
self.open_lmdb()
byteflow = self.txn.get(u'{}'.format(self.lmdb_idx_map[idx]).encode('ascii'))
unpacked = pickle.loads(byteflow)
return unpacked
def __getitem__(self, idx):
# record time
start = time.time()
if self.get_method == 'default':
data = self.get(idx)
print(f'default Finished loading {idx} in {time.time() - start:.2f} seconds')
elif self.get_method == 'hdf5':
data = self.get_from_hdf5(idx)
print(f'hdf5 Finished loading {idx} in {time.time() - start:.2f} seconds')
elif self.get_method == 'lmdb':
data = self.get_from_lmdb(idx)
print(f'lmdb Finished loading {idx} in {time.time() - start:.2f} seconds')
elif self.get_method == 'memory':
data = self.parsed_data[idx]
print(f'memory Finished loading {idx} in {time.time() - start:.2f} seconds')
return data
def __len__(self):
return len(self.mutations)
def len(self) -> int:
return len(self.mutations)
def subset(self, idxs):
self.data = self.data.iloc[idxs].reset_index(drop=True)
self.mutations = list(map(self.mutations.__getitem__, idxs))
# get unique af2 graphs
subset_af2_file_dict, mutation_idx = np.unique([mutation.af2_file for mutation in self.mutations],
return_inverse=True)
# find the index of the af2 file in the subset
if hasattr(self, 'af2_file_dict') and self.af2_file_dict is not None:
af2_file_idx = np.array([np.where(self.af2_file_dict==i)[0][0] for i in subset_af2_file_dict])
self.af2_file_dict = subset_af2_file_dict
# get the subset of af2 graphs
self.af2_coord_dict = list(map(self.af2_coord_dict.__getitem__, af2_file_idx)) if self.af2_coord_dict is not None else None
self.af2_plddt_dict = list(map(self.af2_plddt_dict.__getitem__, af2_file_idx)) if self.af2_plddt_dict is not None else None
self.af2_confidence_dict = list(map(self.af2_confidence_dict.__getitem__, af2_file_idx)) if self.af2_confidence_dict is not None else None
self.af2_dssp_dict = list(map(self.af2_dssp_dict.__getitem__, af2_file_idx)) if self.af2_dssp_dict is not None else None
self.af2_graph_dict = list(map(self.af2_graph_dict.__getitem__, af2_file_idx)) if self.af2_graph_dict is not None else None
# reset the af2_seq_index
_ = list(map(lambda x, y: x.set_af2_seq_index(y), self.mutations, mutation_idx))
# get unique esm files
if hasattr(self, 'esm_file_dict') and self.esm_file_dict is not None:
subset_esm_file_dict, mutation_idx = np.unique([mutation.ESM_prefix for mutation in self.mutations],
return_inverse=True)
# find the index of the esm file in the subset
esm_file_idx = np.array([np.where(self.esm_file_dict==i)[0][0] for i in subset_esm_file_dict])
self.esm_file_dict = subset_esm_file_dict
# get the subset of esm embeddings
self.esm_dict = list(map(self.esm_dict.__getitem__, esm_file_idx)) if self.esm_dict is not None else None
# reset the esm_seq_index
_ = list(map(lambda x, y: x.set_esm_seq_index(y), self.mutations, mutation_idx))
# get unique msa files
if hasattr(self, 'msa_file_dict') and self.msa_file_dict is not None:
subset_msa_file_dict, mutation_idx = np.unique([mutation.uniprot_id for mutation in self.mutations],
return_inverse=True)
# find the index of the msa file in the subset
msa_file_idx = np.array([np.where(self.msa_file_dict==i)[0][0] for i in subset_msa_file_dict])
self.msa_file_dict = subset_msa_file_dict
# get the subset of msa embeddings
self.msa_dict = list(map(self.msa_dict.__getitem__, msa_file_idx)) if self.msa_dict is not None else None
# reset the msa_seq_index
_ = list(map(lambda x, y: x.set_msa_seq_index(y), self.mutations, mutation_idx))
# subset hdf5 idx map, if exists
if hasattr(self, 'hdf5_idx_map') and self.hdf5_idx_map is not None:
self.hdf5_idx_map = self.hdf5_idx_map[idxs]
# subset lmdb idx map, if exists
if hasattr(self, 'lmdb_idx_map') and self.lmdb_idx_map is not None:
self.lmdb_idx_map = self.lmdb_idx_map[idxs]
if hasattr(self, 'parsed_data') and self.parsed_data is not None:
self.parsed_data = list(map(self.parsed_data.__getitem__, idxs))
return self
def shuffle(self, idxs):
# for shuffle, we only need to shuffle self.mutations and self.data
self.data = self.data.iloc[idxs].reset_index(drop=True)
self.mutations = list(map(self.mutations.__getitem__, idxs))
# shuffle hdf5 idx map, if exists
if self.hdf5_idx_map is not None:
self.hdf5_idx_map = self.hdf5_idx_map[idxs]
# shuffle lmdb idx map, if exists
if self.lmdb_idx_map is not None:
self.lmdb_idx_map = self.lmdb_idx_map[idxs]
def get_label_counts(self) -> np.ndarray:
if self.data.columns.isin(['score']).any():
if (-1 in self.data['score'].values):
lof = (self.data['score']==-1).sum()
benign = (self.data['score']==0).sum()
gof = (self.data['score']==1).sum()
patho = (self.data['score']==3).sum()
if lof != 0 and gof != 0:
return np.array([lof, benign, gof, patho])
else:
return np.array([benign, patho])
else:
benign = (self.data['score']==0).sum()
patho = (self.data['score']==1).sum()
return np.array([benign, patho])
else:
return np.array([0, 0])
# create a hdf5 file for the dataset, for faster loading
def create_hdf5(self):
hdf5_file = self.data_file.replace('.csv', f'.{datetime.now()}.hdf5')
self.hdf5_file = hdf5_file
self.get_method = 'hdf5'
self.hdf5_keys = None
# create a mapping from mutation index to hdf5 index, in case of subset or shuffle
self.hdf5_idx_map = np.arange(len(self))
with h5py.File(hdf5_file, 'w') as f:
for i in range(len(self)):
features = self.get(i)
# store feature keys into self
if self.hdf5_keys is None:
self.hdf5_keys = list(features.keys())
for key in features.keys():
f.create_dataset(f'{i}/{key}', data=features[key])
return
# create a lmdb file for the dataset, for faster loading
def create_lmdb(self, write_frequency=1000):
lmdb_path = self.data_file.replace('.csv', f'.{datetime.now()}.lmdb')
map_size = 5e12 # 5TB
db = lmdb.open(lmdb_path, subdir=False, map_size=map_size, readonly=False, meminit=False, map_async=True)
print(f"Begin loading {len(self)} points into lmdb")
txn = db.begin(write=True)
for idx in range(len(self)):
d = self.get(idx)
txn.put(u'{}'.format(idx).encode('ascii'), pickle.dumps(d))
print(f'Finished loading {idx}')
if (idx + 1) % write_frequency == 0:
txn.commit()
txn = db.begin(write=True)
txn.commit()
print(f"Finished loading {len(self)} points into lmdb")
self.lmdb_path = lmdb_path
self.lmdb_idx_map = np.arange(len(self))
self.get_method = 'lmdb'
print("Flushing database ...")
db.sync()
db.close()
return
def load_all_to_memory(self):
# load all data into memory
self.get_method = 'memory'
self.parsed_data = []
ctime = time.time()
tmp_data = []
app = tmp_data.append
for i in range(len(self)):
app(self.get(i))
if (i+1) % 200 == 0:
print(f'rank {self.gpu_id} Finished loading {i+1} points in {time.time() - ctime:.2f} seconds')
ctime = time.time()
self.parsed_data.extend(tmp_data)
tmp_data = []
app = tmp_data.append
print(f'rank {self.gpu_id} Extended {i+1} points in {time.time() - ctime:.2f} seconds')
self.parsed_data.extend(tmp_data)
# safe to delete all 'dict' data
if hasattr(self, 'af2_file_dict'):
del self.af2_file_dict
if hasattr(self, 'af2_coord_dict'):
del self.af2_coord_dict
if hasattr(self, 'af2_plddt_dict'):
del self.af2_plddt_dict
if hasattr(self, 'af2_confidence_dict'):
del self.af2_confidence_dict
if hasattr(self, 'af2_dssp_dict'):
del self.af2_dssp_dict
if hasattr(self, 'af2_graph_dict'):
del self.af2_graph_dict
if hasattr(self, 'esm_file_dict'):
del self.esm_file_dict
if hasattr(self, 'esm_dict'):
del self.esm_dict
if hasattr(self, 'msa_file_dict'):
del self.msa_file_dict
if hasattr(self, 'msa_dict'):
del self.msa_dict
if hasattr(self, 'af2_single_dict'):
del self.af2_single_dict
if hasattr(self, 'af2_pairwise_dict'):
del self.af2_pairwise_dict
return
# clean up hdf5 and lmdb files
def clean_up(self):
if hasattr(self, 'hdf5_file') and self.hdf5_file is not None and os.path.exists(self.hdf5_file):
os.remove(self.hdf5_file)
if hasattr(self, 'lmdb_path') and self.lmdb_path is not None and os.path.exists(self.lmdb_path):
os.remove(self.lmdb_path)
if hasattr(self, 'af2_pair_dict_lmdb_path') and self.af2_pair_dict_lmdb_path is not None:
for lmdb_path in self.af2_pair_dict_lmdb_path:
if os.path.exists(lmdb_path):
os.remove(lmdb_path)
# close lmdb env, if exists
if hasattr(self, 'env') and self.env is not None:
self.env.close()
if hasattr(self, 'af2_pairwise_env') and self.af2_pairwise_env is not None:
self.af2_pairwise_env.close()
return
class FullGraphMutationDataset(TorchDataset):
"""
MutationDataSet dataset, input a file of mutations, output a star graph and KNN graph
Can be either single mutation or multiple mutations.
Args:
data_file (string or pd.DataFrame): Path or pd.DataFrame for a csv file for a list of mutations
data_type (string): Type of this data, 'ClinVar', 'DMS', etc
"""
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = None,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim', 'esm1b'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
scale_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_sidechain: bool = False,
local_coord_transform: bool = False,
use_cb: bool = False,
add_msa_contacts: bool = True,
add_dssp: bool = False,
add_msa: bool = False,
add_confidence: bool = False,
loaded_confidence: bool = False,
loaded_esm: bool = False,
add_ptm: bool = False,
data_augment: bool = False,
score_transfer: bool = False,
alt_type: Literal['alt', 'concat', 'diff'] = 'alt',
computed_graph: bool = False,
loaded_msa: bool = False,
neighbor_type: Literal['KNN', 'radius', 'radius-KNN'] = 'KNN',
max_len = 2251,
convert_to_onesite: bool = False,
add_af2_single: bool = False,
add_af2_pairwise: bool = False,
loaded_af2_single: bool = False,
loaded_af2_pairwise: bool = False,
use_lmdb: bool = False
):
super(FullGraphMutationDataset, self).__init__()
if isinstance(data_file, pd.DataFrame):
self.data = data_file
self.data_file = 'pd.DataFrame'
elif isinstance(data_file, str):
try:
self.data = pd.read_csv(data_file, index_col=0, low_memory=False)
except UnicodeDecodeError:
self.data = pd.read_csv(data_file, index_col=0, encoding='ISO-8859-1')
self.data_file = data_file
else:
raise ValueError("data_path must be a string or a pandas.DataFrame")
if convert_to_onesite:
self.data = utils.convert_to_onesite(self.data)
self.data_type = data_type
self._y_columns = self.data.columns[self.data.columns.str.startswith('score')]
self.node_embedding_type = node_embedding_type
self.graph_type = graph_type
self.neighbor_type = neighbor_type
self.add_plddt = add_plddt
self.scale_plddt = scale_plddt
self.add_conservation = add_conservation
self.add_position = add_position
self.use_cb = use_cb
self.add_sidechain = add_sidechain
self.add_msa_contacts = add_msa_contacts
self.add_dssp = add_dssp
self.add_msa = add_msa
self.add_confidence = add_confidence
self.add_af2_single = add_af2_single
self.add_af2_pairwise = add_af2_pairwise
self.loaded_af2_single = loaded_af2_single
self.loaded_af2_pairwise = loaded_af2_pairwise
self.loaded_confidence = loaded_confidence
self.add_ptm = add_ptm
self.loaded_msa = loaded_msa
self.loaded_esm = loaded_esm
self.alt_type = alt_type
self.max_len = max_len
self.loop = loop
self.data_augment = data_augment
# initialize some dicts
self.af2_file_dict = None
self.af2_coord_dict = None
self.af2_plddt_dict = None
self.af2_confidence_dict = None
self.af2_dssp_dict = None
self.af2_graph_dict = None
self.esm_file_dict = None
self.esm_dict = None
self.msa_file_dict = None
self.msa_dict = None
self._check_embedding_files()
if score_transfer:
# only do score_transfer when score is 0 or 1
if set(self.data['score'].unique()) <= {0, 1}:
self.data['score'] = self.data['score'] * 3
else:
warnings.warn("score_transfer is only applied when score is 0 or 1")
if data_augment and set(self.data['score'].unique()) > {0, 1}:
# reverse ref and alt and score, only when we do gof/lof
reverse_data = self.data.copy()
# reverse only for score == 1 and score == 0
reverse_data = reverse_data.loc[(reverse_data['score'] == 1) | (reverse_data['score'] == 0), :]
reverse_data['ref'] = self.data['alt']
reverse_data['alt'] = self.data['ref']
reverse_data['score'] = -reverse_data['score']
self.data = pd.concat([self.data, reverse_data], ignore_index=True)
self._set_mutations()
self.computed_graph = computed_graph # do not need to compute graph as we will use full graph
self._load_af2_features(radius=radius, max_neighbors=max_neighbors, loop=loop, gpu_id=gpu_id)
if (self.add_msa or self.add_conservation) and self.loaded_msa:
self._load_msa_features()
if self.loaded_esm:
self._load_esm_features()
if self.loaded_af2_pairwise or self.loaded_af2_single:
self._load_af2_reps()
self._set_node_embeddings()
self._set_edge_embeddings()
self.unmatched_msa = 0
# TODO: consider load language model embeddings to RAM
# shuffle the data
if shuffle:
np.random.seed(0)
shuffle_index = np.random.permutation(len(self.mutations))
self.data = self.data.iloc[shuffle_index].reset_index(drop=True)
self.mutations = list(map(self.mutations.__getitem__, shuffle_index))
if self.add_ptm:
self.ptm_ref = pd.read_csv('./data.files/ptm.small.csv', index_col=0)
self.get_method = 'default'
if use_lmdb:
self.get_method = 'lmdb'
self.lmdb_path = data_file.replace('.csv', '.lmdb')
self.lmdb_idx_map = np.arange(len(self))
def _check_embedding_files(self):
print(f"read in {len(self.data)} mutations from {self.data_file}")
# scan uniprot files and transcript files to check if they exist
unique_data = self.data.drop_duplicates(subset=['uniprotID'])
print(f"found {len(unique_data)} unique wt sequences")
# only check embeddings if we are using esm
if self.node_embedding_type == 'esm':
with Pool(NUM_THREADS) as p:
embedding_exist = p.starmap(utils.get_embedding_from_esm2, zip(unique_data['uniprotID'], cycle([True])))
# msa_exist = p.starmap(get_attn_from_msa, zip(unique_data['ENST'], unique_data['wt.orig'], cycle([True])))
# TODO: check MSA again, consider using raw MSA only
to_drop = unique_data['wt.orig'].loc[~np.array(embedding_exist, dtype=bool)]
print(f"drop {np.sum(self.data['wt.orig'].isin(to_drop))} mutations that do not have embedding or msa")
self.data = self.data[~self.data['wt.orig'].isin(to_drop)]
else:
print(f"skip checking embedding files for {self.node_embedding_type}")
def _set_mutations(self):
if 'af2_file' not in self.data.columns:
self.data['af2_file'] = pd.NA
with Pool(NUM_THREADS) as p:
point_mutations = p.starmap(utils.get_mutations, zip(self.data['uniprotID'],
self.data['ENST'] if 'ENST' in self.data.columns else cycle([None]),
self.data['wt.orig'],
self.data['sequence.len.orig'],
self.data['pos.orig'],
self.data['ref'],
self.data['alt'],
cycle([self.max_len]),
self.data['af2_file'],))
# drop the data that does not have coordinates if we are using af2
# if self.graph_type == 'af2':
print(f"drop {np.sum(~np.array(point_mutations, dtype=bool))} mutations that don't have coordinates")
self.data = self.data.loc[np.array(point_mutations, dtype=bool)]
self.mutations = list(filter(bool, point_mutations))
print(f'Finished loading {len(self.mutations)} mutations')
def _load_af2_features(self, radius, max_neighbors, loop, gpu_id):
self.af2_file_dict, mutation_idx = np.unique([mutation.af2_file for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_af2_seq_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
self.af2_coord_dict = p.starmap(utils.get_coords_from_af2, zip(self.af2_file_dict, cycle([self.add_sidechain])))
print(f'Finished loading {len(self.af2_coord_dict)} af2 coords')
self.af2_plddt_dict = p.starmap(utils.get_plddt_from_af2, zip(self.af2_file_dict)) if self.add_plddt else None
print(f'Finished loading plddt')
self.af2_confidence_dict = p.starmap(utils.get_confidence_from_af2file, zip(self.af2_file_dict, self.af2_plddt_dict)) if self.add_plddt and self.add_confidence and self.loaded_confidence else None
print(f'Finished loading confidence')
self.af2_dssp_dict = p.starmap(utils.get_dssp_from_af2, zip(self.af2_file_dict)) if self.add_dssp else None
print(f'Finished loading dssp')
self.radius = radius
self.max_neighbors = max_neighbors
self.loop = loop
self.gpu_id = gpu_id
def _load_esm_features(self):
self.esm_file_dict, mutation_idx = np.unique([mutation.ESM_prefix for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_esm_seq_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
self.esm_dict = p.starmap(utils.get_esm_dict_from_uniprot, zip(self.esm_file_dict))
print(f'Finished loading {len(self.esm_file_dict)} esm embeddings')
def _load_af2_reps(self):
self.af2_rep_file_prefix_dict, mutation_idx = np.unique([mutation.af2_rep_file_prefix for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_af2_rep_index(y), self.mutations, mutation_idx))
with Pool(NUM_THREADS) as p:
if self.add_af2_single and self.loaded_af2_single:
self.af2_single_dict = p.starmap(utils.get_af2_single_rep_dict_from_prefix, zip(self.af2_rep_file_prefix_dict))
print(f'Finished loading {len(self.af2_rep_file_prefix_dict)} alphafold2 single representations')
# because the pairwise representation is too large to fit in RAM, we have to select a subset of them
if self.add_af2_pairwise and self.loaded_af2_pairwise:
raise ValueError("Not implemented in this version")
def _load_msa_features(self):
self.msa_file_dict, mutation_idx = np.unique([mutation.uniprot_id for mutation in self.mutations],
return_inverse=True)
_ = list(map(lambda x, y: x.set_msa_seq_index(y), self.mutations, mutation_idx))
with get_context('spawn').Pool(NUM_THREADS) as p:
# msa_dict: msa_seq, conservation, msa
self.msa_dict = p.starmap(utils.get_msa_dict_from_transcript, zip(self.msa_file_dict))
print(f'Finished loading {len(self.msa_dict)} msa seqs')
def _set_node_embeddings(self):
pass
def _set_edge_embeddings(self):
pass
def get_mask(self, mutation: utils.Mutation):
return mutation.pos - 1, mutation
def get_graph_and_mask(self, mutation: utils.Mutation):
# get the ordinary graph
coords: np.ndarray = self.af2_coord_dict[mutation.af2_seq_index] # N, C, O, CA, CB
# remember we could have cropped sequence
if mutation.crop:
coords = coords[mutation.seq_start - 1:mutation.seq_end, :]
# get the mask
mask_idx, mutation = self.get_mask(mutation)
# prepare edge features
if self.add_msa_contacts:
coevo_strength = utils.get_contacts_from_msa(mutation, False)
if isinstance(coevo_strength, int):
coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
mutation.seq_end - mutation.seq_start + 1, 1])
else:
coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
mutation.seq_end - mutation.seq_start + 1, 0])
start = time.time()
if self.add_af2_pairwise:
if self.loaded_af2_pairwise:
# we don't use the self.af2_pair_dict anymore because it won't fit in RAM
# pairwise_rep = self.af2_pair_dict[mutation.af2_rep_index]
# we load from lmdb
byteflow = self.af2_pairwise_txn.get(u'{}'.format(mutation.af2_rep_file_prefix.split('/')[-1]).encode('ascii'))
pairwise_rep = pickle.loads(byteflow)
if pairwise_rep is None:
pairwise_rep = utils.get_af2_pairwise_rep_dict_from_prefix(mutation.af2_rep_file_prefix)
# instead we load from lmdb
# if not hasattr(self, 'af2_pairwise_txn'):
# # open all lmdb in self.af2_pair_dict_lmdb_path
# self.af2_pairwise_env = []
# self.af2_pairwise_txn = []
# for lmdb_path in self.af2_pair_dict_lmdb_path:
# af2_pairwise_env = lmdb.open(lmdb_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False)
# self.af2_pairwise_txn.append(af2_pairwise_env.begin(write=False, buffers=True))
# self.af2_pairwise_env.append(af2_pairwise_env)
# byteflow = self.af2_pairwise_txn[mutation.af2_rep_index // 20].get(u'{}'.format(mutation.af2_rep_index).encode('ascii'))
# pairwise_rep = pickle.loads(byteflow)
else:
pairwise_rep = utils.get_af2_pairwise_rep_dict_from_prefix(mutation.af2_rep_file_prefix)
# crop the pairwise_rep, if necessary
if mutation.af2_rep_file_prefix.find('-F') == -1:
pairwise_rep = pairwise_rep[mutation.seq_start_orig - 1: mutation.seq_end_orig,
mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
pairwise_rep = pairwise_rep[mutation.seq_start - 1: mutation.seq_end,
mutation.seq_start - 1: mutation.seq_end]
coevo_strength = np.concatenate([coevo_strength, pairwise_rep], axis=2)
end = time.time()
print(f'Finished loading pairwise in {end - start:.2f} seconds')
edge_attr = coevo_strength # N, N, 1
# if add positional embedding, add it here
if self.add_position:
# add a sin positional embedding that reflects the relative position of the residue
edge_position = np.arange(coords.shape[0])[:, None] - np.arange(coords.shape[0])[None, :]
edge_attr = np.concatenate(
(edge_attr, np.sin(np.pi / 2 * edge_position / self.max_len)[:, :, None]),
axis=2)
return coords, None, None, edge_attr, None, mask_idx, mutation
def get_one_mutation(self, idx):
mutation: utils.Mutation = self.mutations[idx]
# get the graph
coords, _, _, edge_attr, _, mask_idx, mutation = self.get_graph_and_mask(mutation)
# get embeddings
if self.node_embedding_type == 'esm':
if self.loaded_esm:
# esm embeddings have <start> token, so starts at 1
embed_data = self.esm_dict[mutation.esm_seq_index][mutation.seq_start:mutation.seq_end + 1]
else:
embed_data = utils.get_embedding_from_esm2(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
to_alt = np.concatenate([utils.ESM_AA_EMBEDDING_DICT[alt_aa].reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([utils.ESM_AA_EMBEDDING_DICT[ref_aa].reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'one-hot-idx':
assert not self.add_conservation and not self.add_plddt
embed_logits, embed_data, one_hot_mat = utils.get_embedding_from_onehot_nonzero(mutation.seq, return_idx=True, return_onehot_mat=True)
to_alt = np.concatenate([np.array(utils.AA_DICT.index(alt_aa)).reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([np.array(utils.AA_DICT.index(ref_aa)).reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'one-hot':
embed_data, one_hot_mat = utils.get_embedding_from_onehot(mutation.seq, return_idx=False, return_onehot_mat=True)
to_alt = np.concatenate([np.eye(len(utils.AA_DICT))[utils.AA_DICT.index(alt_aa)].reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([np.eye(len(utils.AA_DICT))[utils.AA_DICT.index(ref_aa)].reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'aa-5dim':
embed_data = utils.get_embedding_from_5dim(mutation.seq)
to_alt = np.concatenate([np.array(utils.AA_5DIM_EMBED[alt_aa]).reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([np.array(utils.AA_5DIM_EMBED[ref_aa]).reshape(1, -1) for ref_aa in mutation.ref_aa])
elif self.node_embedding_type == 'esm1b':
embed_data = utils.get_embedding_from_esm1b(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
to_alt = np.concatenate([utils.ESM1b_AA_EMBEDDING_DICT[alt_aa].reshape(1, -1) for alt_aa in mutation.alt_aa])
to_ref = np.concatenate([utils.ESM1b_AA_EMBEDDING_DICT[ref_aa].reshape(1, -1) for ref_aa in mutation.ref_aa])
# add conservation, if needed
if self.loaded_msa and (self.add_msa or self.add_conservation):
msa_seq = self.msa_dict[mutation.msa_seq_index][0]
conservation_data = self.msa_dict[mutation.msa_seq_index][1]
msa_data = self.msa_dict[mutation.msa_seq_index][2]
else:
if self.add_conservation or self.add_msa:
msa_seq, conservation_data, msa_data = utils.get_msa_dict_from_transcript(mutation.uniprot_id)
if self.add_conservation:
if conservation_data.shape[0] == 0:
conservation_data = np.zeros((embed_data.shape[0], 20))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
conservation_data = conservation_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
conservation_data = conservation_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
self.unmatched_msa += 1
print(f'Unmatched MSA: {self.unmatched_msa}')
conservation_data = np.zeros((embed_data.shape[0], 20))
embed_data = np.concatenate([embed_data, conservation_data], axis=1)
to_alt = np.concatenate([to_alt, conservation_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, conservation_data[mask_idx]], axis=1)
# add pLDDT, if needed
if self.add_plddt:
# get plddt
plddt_data = self.af2_plddt_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if mutation.crop:
plddt_data = plddt_data[mutation.seq_start - 1: mutation.seq_end]
if self.add_confidence:
confidence_data = plddt_data / 100
if plddt_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {plddt_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
plddt_data = np.ones_like(embed_data[:, 0]) * 50
if self.add_confidence:
# assign 0.5 confidence to all points
confidence_data = np.ones_like(embed_data[:, 0]) / 2
if self.scale_plddt:
plddt_data = plddt_data / 100
embed_data = np.concatenate([embed_data, plddt_data[:, None]], axis=1)
to_alt = np.concatenate([to_alt, plddt_data[mask_idx, None]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, plddt_data[mask_idx]], axis=1)
# add dssp, if needed
if self.add_dssp:
# get dssp
dssp_data = self.af2_dssp_dict[mutation.af2_seq_index]
if mutation.crop:
dssp_data = dssp_data[mutation.seq_start - 1: mutation.seq_end]
if dssp_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'DSSP {dssp_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'DSSP file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
dssp_data = np.zeros_like(embed_data[:, 0])
# if dssp_data size axis is 1, add a dimension
if len(dssp_data.shape) == 1:
dssp_data = dssp_data[:, None]
embed_data = np.concatenate([embed_data, dssp_data], axis=1)
to_alt = np.concatenate([to_alt, dssp_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, dssp_data[mask_idx]], axis=1)
if self.add_ptm:
# ptm used to behind msa, moved it here
ptm_data = utils.get_ptm_from_mutation(mutation, self.ptm_ref)
embed_data = np.concatenate([embed_data, ptm_data], axis=1)
to_alt = np.concatenate([to_alt, ptm_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, ptm_data[mask_idx]], axis=1)
if self.add_af2_single:
if self.loaded_af2_single:
single_rep = self.af2_single_dict[mutation.af2_rep_index]
else:
single_rep = utils.get_af2_single_rep_dict_from_prefix(mutation.af2_rep_file_prefix)
# crop the pairwise_rep, if necessary
if mutation.af2_rep_file_prefix.find('-F') == -1:
single_rep = single_rep[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
single_rep = single_rep[mutation.seq_start - 1: mutation.seq_end]
embed_data = np.concatenate([embed_data, single_rep], axis=1)
to_alt = np.concatenate([to_alt, single_rep[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, single_rep[mask_idx]], axis=1)
if self.add_msa:
if msa_data.shape[0] == 0:
msa_data = np.zeros((embed_data.shape[0], 199))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
msa_data = msa_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
msa_data = msa_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
msa_data = np.zeros((embed_data.shape[0], 199))
embed_data = np.concatenate([embed_data, msa_data], axis=1)
if self.alt_type == 'alt':
to_alt = np.concatenate([to_alt, msa_data[mask_idx]], axis=1)
if self.alt_type == 'diff':
to_ref = np.concatenate([to_ref, msa_data[mask_idx]], axis=1)
# replace the embedding with the mutation, note pos is 1-based
# but we don't modify the embedding matrix, instead we return a mask matrix
embed_data_mask = np.ones_like(embed_data)
embed_data_mask[mask_idx] = 0
if self.alt_type == 'alt':
alt_embed_data = np.zeros_like(embed_data)
alt_embed_data[mask_idx] = to_alt
elif self.alt_type == 'concat':
alt_embed_data = np.zeros((embed_data.shape[0], to_alt.shape[1] + to_ref.shape[1]))
alt_embed_data[mask_idx] = np.concatenate([to_alt, to_ref], axis=1)
elif self.alt_type == 'diff':
alt_embed_data = np.zeros_like(embed_data)
alt_embed_data[mask_idx] = to_alt
embed_data[mask_idx] = to_ref
else:
raise ValueError(f'alt_type {self.alt_type} not supported')
# prepare node vector features
# get CA_coords
CA_coord = coords[:, 3]
CB_coord = coords[:, 4]
# add CB_coord for GLY
CB_coord[np.isnan(CB_coord)] = CA_coord[np.isnan(CB_coord)]
if self.graph_type == '1d-neighbor':
CA_coord[:, 0] = np.arange(coords.shape[0])
CB_coord[:, 0] = np.arange(coords.shape[0])
coords = np.zeros_like(coords)
CA_CB = coords[:, [4]] - coords[:, [3]] # Note that glycine does not have CB
CA_CB[np.isnan(CA_CB)] = 0
# Change the CA_CB of the mutated residue to 0
# but we don't modify the CA_CB matrix, instead we return a mask matrix
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.transpose(np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1), (0, 2, 1))
if self.add_sidechain:
# get sidechain coords
sidechain_nodes_vector = coords[:, 5:] - coords[:, [3]]
sidechain_nodes_vector[np.isnan(sidechain_nodes_vector)] = 0
sidechain_nodes_vector = np.transpose(sidechain_nodes_vector, (0, 2, 1))
nodes_vector = np.concatenate([nodes_vector, sidechain_nodes_vector], axis=2)
# prepare graph
features = dict(
embed_logits=embed_logits if self.node_embedding_type == 'one-hot-idx' else None,
one_hot_mat=one_hot_mat if self.node_embedding_type.startswith('one-hot') else None,
mask_idx=mask_idx,
embed_data=embed_data,
embed_data_mask=embed_data_mask,
alt_embed_data=alt_embed_data,
coords=coords,
CA_coord=CA_coord,
CB_coord=CB_coord,
edge_index=None,
edge_index_star=None,
edge_attr=edge_attr,
edge_attr_star=None,
nodes_vector=nodes_vector,
)
if self.add_confidence:
# add position wise confidence
if self.add_plddt:
features['plddt'] = confidence_data
if self.loaded_confidence:
pae = self.af2_confidence_dict[mutation.af2_seq_index]
else:
pae = utils.get_confidence_from_af2file(mutation.af2_file, self.af2_plddt_dict[mutation.af2_seq_index])
if mutation.crop:
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
else:
# get plddt
plddt_data = utils.get_plddt_from_af2(mutation.af2_file)
pae = utils.get_confidence_from_af2file(mutation.af2_file, plddt_data)
if mutation.crop:
confidence_data = plddt_data[mutation.seq_start - 1: mutation.seq_end] / 100
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
if confidence_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {confidence_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
confidence_data = np.ones_like(embed_data[:, 0]) * 0.8
features['plddt'] = confidence_data
# add pairwise confidence
features['edge_confidence'] = pae
return features
def get(self, idx):
start_time=time.time()
features_np = self.get_one_mutation(idx)
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
# padding x to the max length
x_padding_mask = torch.zeros(self.max_len, dtype=torch.bool)
pos=torch.from_numpy(features_np['CB_coord']).to(torch.float32) if self.use_cb else torch.from_numpy(features_np['CA_coord']).to(torch.float32)
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32)
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32)
x_mask=torch.from_numpy(features_np['embed_data_mask'][:, 0]).to(torch.bool)
x_alt=torch.from_numpy(features_np['alt_embed_data']).to(torch.float32)
if self.add_confidence:
plddt=torch.from_numpy(features_np['plddt']).to(torch.float32)
edge_confidence=torch.from_numpy(features_np['edge_confidence']).to(torch.float32)
if x.shape[0] < self.max_len:
x_padding_mask[x.shape[0]:] = True
x = torch.nn.functional.pad(x, (0, 0, 0, self.max_len - x.shape[0]))
pos = torch.nn.functional.pad(pos, (0, 0, 0, self.max_len - pos.shape[0]))
node_vec_attr = torch.nn.functional.pad(node_vec_attr, (0, 0, 0, 0, 0, self.max_len - node_vec_attr.shape[0]))
edge_attr = torch.nn.functional.pad(edge_attr, (0, 0, 0, self.max_len - edge_attr.shape[0], 0, self.max_len - edge_attr.shape[0]))
x_alt = torch.nn.functional.pad(x_alt, (0, 0, 0, self.max_len - x_alt.shape[0]))
x_mask = torch.nn.functional.pad(x_mask, (0, self.max_len - x_mask.shape[0]), 'constant', True)
if self.add_confidence:
edge_confidence = torch.nn.functional.pad(edge_confidence, (0, self.max_len - edge_confidence.shape[0], 0, self.max_len - edge_confidence.shape[0]))
plddt = torch.nn.functional.pad(plddt, (0, self.max_len - plddt.shape[0]))
features = dict(
x=x,
x_padding_mask=x_padding_mask,
x_mask=x_mask,
x_alt=x_alt,
pos=pos,
edge_attr=edge_attr,
node_vec_attr=node_vec_attr,
y=torch.tensor([self.data[self._y_columns].iloc[int(idx)]]).to(torch.float32).unsqueeze(0),
)
if self.add_confidence:
features['plddt'] = plddt
features['edge_confidence'] = edge_confidence
print(f'Finished loading {idx}th mutation in {time.time() - start_time} seconds')
return features
def get_from_hdf5(self, idx):
if not hasattr(self, 'hdf5_keys') or self.hdf5_file is None:
raise ValueError('hdf5 file is not set')
else:
features = {}
with h5py.File(self.hdf5_file, 'r') as f:
for key in self.hdf5_keys:
features[key] = torch.tensor(f[f'{self.hdf5_idx_map[idx]}/{key}'])
return Data(**features)
def open_lmdb(self):
self.env = lmdb.open(self.lmdb_path, subdir=False,
readonly=True, lock=False,
readahead=False, meminit=False)
self.txn = self.env.begin(write=False, buffers=True)
def get_from_lmdb(self, idx):
if not hasattr(self, 'txn') or self.txn is None:
self.open_lmdb()
byteflow = self.txn.get(u'{}'.format(self.lmdb_idx_map[idx]).encode('ascii'))
if byteflow is None:
return self.get(idx)
else:
unpacked = pickle.loads(byteflow)
return unpacked
def __getitem__(self, idx):
# record time
start = time.time()
if self.get_method == 'default':
data = self.get(idx)
print(f'default Finished loading {idx} in {time.time() - start:.2f} seconds')
elif self.get_method == 'hdf5':
data = self.get_from_hdf5(idx)
print(f'hdf5 Finished loading {idx} in {time.time() - start:.2f} seconds')
elif self.get_method == 'lmdb':
data = self.get_from_lmdb(idx)
print(f'lmdb Finished loading {idx} in {time.time() - start:.2f} seconds')
return data
def __len__(self):
return len(self.mutations)
def len(self) -> int:
return len(self.mutations)
def subset(self, idxs):
self.data = self.data.iloc[idxs].reset_index(drop=True)
self.mutations = list(map(self.mutations.__getitem__, idxs))
# get unique af2 graphs
subset_af2_file_dict, mutation_idx = np.unique([mutation.af2_file for mutation in self.mutations],
return_inverse=True)
# find the index of the af2 file in the subset
if self.af2_file_dict is not None:
af2_file_idx = np.array([np.where(self.af2_file_dict==i)[0][0] for i in subset_af2_file_dict])
self.af2_file_dict = subset_af2_file_dict
# get the subset of af2 graphs
self.af2_coord_dict = list(map(self.af2_coord_dict.__getitem__, af2_file_idx)) if self.af2_coord_dict is not None else None
self.af2_plddt_dict = list(map(self.af2_plddt_dict.__getitem__, af2_file_idx)) if self.af2_plddt_dict is not None else None
self.af2_confidence_dict = list(map(self.af2_confidence_dict.__getitem__, af2_file_idx)) if self.af2_confidence_dict is not None else None
self.af2_dssp_dict = list(map(self.af2_dssp_dict.__getitem__, af2_file_idx)) if self.af2_dssp_dict is not None else None
self.af2_graph_dict = list(map(self.af2_graph_dict.__getitem__, af2_file_idx)) if self.af2_graph_dict is not None else None
# reset the af2_seq_index
_ = list(map(lambda x, y: x.set_af2_seq_index(y), self.mutations, mutation_idx))
# get unique esm files
if self.esm_file_dict is not None:
subset_esm_file_dict, mutation_idx = np.unique([mutation.ESM_prefix for mutation in self.mutations],
return_inverse=True)
# find the index of the esm file in the subset
esm_file_idx = np.array([np.where(self.esm_file_dict==i)[0][0] for i in subset_esm_file_dict])
self.esm_file_dict = subset_esm_file_dict
# get the subset of esm embeddings
self.esm_dict = list(map(self.esm_dict.__getitem__, esm_file_idx)) if self.esm_dict is not None else None
# reset the esm_seq_index
_ = list(map(lambda x, y: x.set_esm_seq_index(y), self.mutations, mutation_idx))
# get unique msa files
if self.msa_file_dict is not None:
subset_msa_file_dict, mutation_idx = np.unique([mutation.uniprot_id for mutation in self.mutations],
return_inverse=True)
# find the index of the msa file in the subset
msa_file_idx = np.array([np.where(self.msa_file_dict==i)[0][0] for i in subset_msa_file_dict])
self.msa_file_dict = subset_msa_file_dict
# get the subset of msa embeddings
self.msa_dict = list(map(self.msa_dict.__getitem__, msa_file_idx)) if self.msa_dict is not None else None
# reset the msa_seq_index
_ = list(map(lambda x, y: x.set_msa_seq_index(y), self.mutations, mutation_idx))
return self
def shuffle(self, idxs):
# for shuffle, we only need to shuffle self.mutations and self.data
self.data = self.data.iloc[idxs].reset_index(drop=True)
self.mutations = list(map(self.mutations.__getitem__, idxs))
def get_label_counts(self) -> np.ndarray:
if self.data.columns.isin(['score']).any():
if (-1 in self.data['score'].values):
lof = (self.data['score']==-1).sum()
benign = (self.data['score']==0).sum()
gof = (self.data['score']==1).sum()
patho = (self.data['score']==3).sum()
if lof != 0 and gof != 0:
return np.array([lof, benign, gof, patho])
else:
return np.array([benign, patho])
else:
benign = (self.data['score']==0).sum()
patho = (self.data['score']==1).sum()
return np.array([benign, patho])
else:
return np.array([0, 0])
# create a hdf5 file for the dataset, for faster loading
def create_hdf5(self):
hdf5_file = self.data_file.replace('.csv', '.hdf5')
self.hdf5_file = hdf5_file
self.get_method = 'hdf5'
self.hdf5_keys = None
# create a mapping from mutation index to hdf5 index, in case of subset or shuffle
self.hdf5_idx_map = np.arange(len(self))
with h5py.File(hdf5_file, 'w') as f:
for i in range(len(self)):
features = self.get(i)
# store feature keys into self
if self.hdf5_keys is None:
self.hdf5_keys = list(features.keys())
for key in features.keys():
f.create_dataset(f'{i}/{key}', data=features[key])
return
# create a lmdb file for the dataset, for faster loading
def create_lmdb(self, write_frequency=1000):
lmdb_path = self.data_file.replace('.csv', f'.{datetime.now()}.lmdb')
map_size = 5e12 # 5TB
db = lmdb.open(lmdb_path, subdir=False, map_size=map_size, readonly=False, meminit=False, map_async=True)
print(f"Begin loading {len(self)} points into lmdb")
txn = db.begin(write=True)
for idx in range(len(self)):
d = self.get(idx)
txn.put(u'{}'.format(idx).encode('ascii'), pickle.dumps(d))
print(f'Finished loading {idx}')
if (idx + 1) % write_frequency == 0:
txn.commit()
txn = db.begin(write=True)
txn.commit()
print(f"Finished loading {len(self)} points into lmdb")
self.lmdb_path = lmdb_path
self.lmdb_idx_map = np.arange(len(self))
self.get_method = 'lmdb'
print("Flushing database ...")
db.sync()
db.close()
return
# clean up hdf5 and lmdb files
def clean_up(self):
if hasattr(self, 'hdf5_file') and self.hdf5_file is not None and os.path.exists(self.hdf5_file):
os.remove(self.hdf5_file)
if hasattr(self, 'lmdb_path') and self.lmdb_path is not None and os.path.exists(self.lmdb_path):
os.remove(self.lmdb_path)
return
class MutationDataset(GraphMutationDataset):
"""
MutationDataSet dataset, input a file of mutations, output without graph.
Can be either single mutation or multiple mutations.
Args:
data_file (string or pd.DataFrame): Path or pd.DataFrame for a csv file for a list of mutations
data_type (string): Type of this data, 'ClinVar', 'DMS', etc
"""
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = 50,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
precomputed_graph: bool = False,
add_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_msa_contacts: bool = True,
max_len: int = 700,
padding: bool = False,
):
self.padding = padding
super(MutationDataset, self).__init__(data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, precomputed_graph, add_plddt, add_conservation,
add_position, add_msa_contacts,
max_len)
def __getitem__(self, idx):
features_np = self.get_one_mutation(idx)
orig_len = features_np['embed_data'].shape[0]
if self.padding and orig_len < self.max_len:
features_np['embed_data'] = np.pad(features_np['embed_data'], ((0, self.max_len - orig_len), (0, 0)), 'constant')
features_np['coords'] = np.pad(features_np['coords'], ((0, self.max_len - orig_len), (0, 0), (0, 0)), 'constant')
features_np['alt_embed_data'] = np.pad(features_np['alt_embed_data'], ((0, self.max_len - orig_len), (0, 0)), 'constant')
features_np['embed_data_mask'] = np.pad(features_np['embed_data_mask'], ((0, self.max_len - orig_len), (0, 0)), 'constant')
y_mask = np.concatenate((np.ones(orig_len), np.zeros(self.max_len - orig_len)))
else:
y_mask = np.ones(orig_len)
# prepare data
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
features = dict(
x=x,
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool),
x_alt=torch.from_numpy(features_np['alt_embed_data']).to(torch.float32),
pos=torch.from_numpy(features_np['coords']).to(torch.float32),
edge_index=torch.tensor([torch.nan]),
edge_index_star=torch.tensor([torch.nan]),
edge_attr=torch.tensor([torch.nan]),
edge_attr_star=torch.tensor([torch.nan]),
node_vec_attr=torch.tensor([torch.nan]),
y=torch.tensor(self.data[self._y_columns].iloc[int(idx)]).to(torch.float32),
y_mask=torch.from_numpy(y_mask).to(torch.bool), # padding mask
)
return features
def get(self, idx):
return self.__getitem__(idx)
class GraphMaskPredictMutationDataset(GraphMutationDataset):
"""
MutationDataSet dataset, input a file of mutations, output without graph.
Can be either single mutation or multiple mutations.
Args:
data_file (string or pd.DataFrame): Path or pd.DataFrame for a csv file for a list of mutations
data_type (string): Type of this data, 'ClinVar', 'DMS', etc
"""
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = 50,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['one-hot-idx', 'one-hot'] = 'one-hot-idx',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_msa_contacts: bool = True,
computed_graph: bool = True,
neighbor_type: Literal['KNN', 'radius'] = 'KNN',
max_len: int = 700,
mask_percentage: float = 0.15,
):
self.mask_percentage = mask_percentage
super(GraphMaskPredictMutationDataset, self).__init__(
data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, add_plddt, add_conservation,
add_position, add_msa_contacts, computed_graph, neighbor_type,
max_len)
def get_mask(self, mutation: utils.Mutation):
# randomly mask self.mask_percentage of the residues
seq_len = mutation.seq_end - mutation.seq_start + 1
if not pd.isna(mutation.alt_aa):
# add the point mutation to random mask
points_to_mask = int(seq_len * self.mask_percentage)
if points_to_mask > 1:
mask_idx = np.random.choice(seq_len, int(seq_len * 0.15) - 1, replace=False)
mask_idx = np.append(mask_idx, mutation.pos - 1)
else:
mask_idx = np.array([mutation.pos - 1])
else:
mask_idx = np.random.choice(seq_len, int(seq_len * 0.15), replace=False)
mutation.ref_aa = np.array(list(mutation.seq))[mask_idx]
mutation.alt_aa = np.array(['<mask>'] * (len(mask_idx)))
return mask_idx, mutation
def get(self, idx):
features_np = self.get_one_mutation(idx)
embed_logits = features_np['embed_logits']
one_hot_mat = features_np['one_hot_mat']
mutation: utils.Mutation = self.mutaions[idx]
# change embed logits to mask
if not pd.isna(mutation.alt_aa):
embed_logits[mutation.pos - 1] = (one_hot_mat[utils.AA_DICT.index(mutation.ref_aa)]
+ one_hot_mat[utils.AA_DICT.index(mutation.alt_aa)]) / 2
# prepare data
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
features = dict(
x=x,
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool),
x_alt=torch.from_numpy(features_np['alt_embed_data']).to(torch.float32),
pos=torch.from_numpy(features_np['CA_coord']).to(torch.float32),
edge_index=torch.from_numpy(features_np['edge_index']).to(torch.long),
edge_index_star=torch.from_numpy(features_np['edge_index_star']).to(torch.long),
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32),
edge_attr_star=torch.from_numpy(features_np['edge_attr_star']).to(torch.float32),
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32),
y=torch.from_numpy(embed_logits).to(torch.float32),
)
features["edge_index"], features["edge_attr"], mask = \
remove_isolated_nodes(features["edge_index"], features["edge_attr"], x.shape[0])
features["edge_index_star"], features["edge_attr_star"], mask = \
remove_isolated_nodes(features["edge_index_star"], features["edge_attr_star"], x.shape[0])
features["x"] = features["x"][mask]
features["x_mask"] = features["x_mask"][mask]
features["x_alt"] = features["x_alt"][mask]
features["pos"] = features["pos"][mask]
features["node_vec_attr"] = features["node_vec_attr"][mask]
return Data(**features)
class MaskPredictMutationDataset(GraphMaskPredictMutationDataset):
"""
MutationDataSet dataset, input a file of mutations, output without graph.
Can be either single mutation or multiple mutations.
Args:
data_file (string or pd.DataFrame): Path or pd.DataFrame for a csv file for a list of mutations
data_type (string): Type of this data, 'ClinVar', 'DMS', etc
"""
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = 50,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['one-hot-idx', 'one-hot'] = 'one-hot-idx',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
precomputed_graph: bool = False,
add_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_msa_contacts: bool = True,
max_len: int = 700,
padding: bool = False,
mask_percentage: float = 0.15,
):
self.padding = padding
super(MaskPredictMutationDataset, self).__init__(
data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, precomputed_graph, add_plddt, add_conservation,
add_position, add_msa_contacts,
max_len, mask_percentage)
def get_mask(self, mutation: utils.Mutation):
# randomly mask self.mask_percentage of the residues
seq_len = mutation.seq_end - mutation.seq_start + 1
if not pd.isna(mutation.alt_aa):
# add the point mutation to random mask
points_to_mask = int(seq_len * self.mask_percentage)
if points_to_mask > 1:
mask_idx = np.random.choice(seq_len, int(seq_len * 0.15) - 1, replace=False)
mask_idx = np.append(mask_idx, mutation.pos - 1)
else:
mask_idx = np.array([mutation.pos - 1])
else:
mask_idx = np.random.choice(seq_len, int(seq_len * 0.15), replace=False)
mutation.ref_aa = np.array(list(mutation.seq))[mask_idx]
mutation.alt_aa = np.array(['<mask>'] * (len(mask_idx)))
return mask_idx, mutation
def __getitem__(self, idx):
features_np = self.get_one_mutation(idx)
embed_logits = features_np['embed_logits']
one_hot_mat = features_np['one_hot_mat']
mutation: utils.Mutation = self.mutaions[idx]
# change embed logits to mask
if not pd.isna(mutation.alt_aa):
embed_logits[mutation.pos - 1] = (one_hot_mat[utils.AA_DICT.index(mutation.ref_aa)]
+ one_hot_mat[utils.AA_DICT.index(mutation.alt_aa)]) / 2
# padding if necessary
orig_len = features_np['embed_data'].shape[0]
if self.padding and orig_len < self.max_len:
features_np['embed_data'] = np.pad(features_np['embed_data'], ((0, self.max_len - orig_len), (0, 0)), 'constant')
embed_logits = np.pad(embed_logits, ((0, self.max_len - orig_len), (0, 0)), 'constant')
features_np['coords'] = np.pad(features_np['coords'], ((0, self.max_len - orig_len), (0, 0), (0, 0)), 'constant')
features_np['alt_embed_data'] = np.pad(features_np['alt_embed_data'], ((0, self.max_len - orig_len), (0, 0)), 'constant')
features_np['embed_data_mask'] = np.pad(features_np['embed_data_mask'], ((0, self.max_len - orig_len), (0, 0)), 'constant')
y_mask = np.concatenate((np.ones(orig_len), np.zeros(self.max_len - orig_len)))
else:
y_mask = np.ones(orig_len)
# prepare data
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
features = dict(
x=x,
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool),
x_alt=torch.from_numpy(features_np['alt_embed_data']).to(torch.float32),
pos=torch.from_numpy(features_np['CA_coord']).to(torch.float32),
edge_index=torch.tensor([torch.nan]),
edge_index_star=torch.tensor([torch.nan]),
edge_attr=torch.tensor([torch.nan]),
edge_attr_star=torch.tensor([torch.nan]),
node_vec_attr=torch.tensor([torch.nan]),
y=torch.from_numpy(embed_logits).to(torch.float32),
y_mask=torch.from_numpy(y_mask).to(torch.bool), # padding mask
)
return features
class GraphMultiOnesiteMutationDataset(GraphMutationDataset):
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = None,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim', 'esm1b'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
scale_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_sidechain: bool = False,
local_coord_transform: bool = False,
use_cb: bool = False,
add_msa_contacts: bool = True,
add_dssp: bool = False,
add_msa: bool = False,
add_confidence: bool = False,
loaded_confidence: bool = False,
loaded_esm: bool = False,
add_ptm: bool = False,
data_augment: bool = False,
score_transfer: bool = False,
alt_type: Literal['alt', 'concat', 'diff'] = 'alt',
computed_graph: bool = True,
loaded_msa: bool = False,
neighbor_type: Literal['KNN', 'radius', 'radius-KNN'] = 'KNN',
max_len = 2251,
convert_to_onesite: bool = False,
add_af2_single: bool = False,
add_af2_pairwise: bool = False,
loaded_af2_single: bool = False,
loaded_af2_pairwise: bool = False,
):
super(GraphMultiOnesiteMutationDataset, self).__init__(
data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, add_plddt, scale_plddt,
add_conservation, add_position, add_sidechain,
local_coord_transform, use_cb, add_msa_contacts, add_dssp,
add_msa, add_confidence, loaded_confidence, loaded_esm,
add_ptm, data_augment, score_transfer, alt_type,
computed_graph, loaded_msa, neighbor_type, max_len)
self._y_mask_columns = self.data.columns[self.data.columns.str.startswith('confidence.score')]
def get_one_mutation(self, idx):
mutation: utils.Mutation = self.mutations[idx]
# get the graph
coords, edge_index, edge_index_star, edge_attr, edge_attr_star, mask_idx, mutation = self.get_graph_and_mask(mutation)
# get embeddings
if self.node_embedding_type == 'esm':
if self.loaded_esm:
# esm embeddings have <start> token, so starts at 1
embed_data = self.esm_dict[mutation.esm_seq_index][mutation.seq_start:mutation.seq_end + 1]
else:
embed_data = utils.get_embedding_from_esm2(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
elif self.node_embedding_type == 'one-hot-idx':
assert not self.add_conservation and not self.add_plddt
embed_logits, embed_data, one_hot_mat = utils.get_embedding_from_onehot_nonzero(mutation.seq, return_idx=True, return_onehot_mat=True)
elif self.node_embedding_type == 'one-hot':
embed_data, one_hot_mat = utils.get_embedding_from_onehot(mutation.seq, return_idx=False, return_onehot_mat=True)
elif self.node_embedding_type == 'aa-5dim':
embed_data = utils.get_embedding_from_5dim(mutation.seq)
elif self.node_embedding_type == 'esm1b':
embed_data = utils.get_embedding_from_esm1b(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
# add conservation, if needed
if self.loaded_msa and (self.add_msa or self.add_conservation):
msa_seq = self.msa_dict[mutation.msa_seq_index][0]
conservation_data = self.msa_dict[mutation.msa_seq_index][1]
msa_data = self.msa_dict[mutation.msa_seq_index][2]
else:
if self.add_conservation or self.add_msa:
msa_seq, conservation_data, msa_data = utils.get_msa_dict_from_transcript(mutation.uniprot_id)
if self.add_conservation:
if conservation_data.shape[0] == 0:
conservation_data = np.zeros((embed_data.shape[0], 20))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
conservation_data = conservation_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
conservation_data = conservation_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
self.unmatched_msa += 1
print(f'Unmatched MSA: {self.unmatched_msa}')
conservation_data = np.zeros((embed_data.shape[0], 20))
embed_data = np.concatenate([embed_data, conservation_data], axis=1)
# add pLDDT, if needed
if self.add_plddt:
# get plddt
plddt_data = self.af2_plddt_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if mutation.crop:
plddt_data = plddt_data[mutation.seq_start - 1: mutation.seq_end]
if self.add_confidence:
confidence_data = plddt_data / 100
if plddt_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {plddt_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
plddt_data = np.ones_like(embed_data[:, 0]) * 50
if self.add_confidence:
# assign 0.5 confidence to all points
confidence_data = np.ones_like(embed_data[:, 0]) / 2
if self.scale_plddt:
plddt_data = plddt_data / 100
embed_data = np.concatenate([embed_data, plddt_data[:, None]], axis=1)
# add dssp, if needed
if self.add_dssp:
# get dssp
dssp_data = self.af2_dssp_dict[mutation.af2_seq_index]
if mutation.crop:
dssp_data = dssp_data[mutation.seq_start - 1: mutation.seq_end]
if dssp_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'DSSP {dssp_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'DSSP file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
dssp_data = np.zeros_like(embed_data[:, 0])
# if dssp_data size axis is 1, add a dimension
if len(dssp_data.shape) == 1:
dssp_data = dssp_data[:, None]
embed_data = np.concatenate([embed_data, dssp_data], axis=1)
if self.add_msa:
if msa_data.shape[0] == 0:
msa_data = np.zeros((embed_data.shape[0], 199))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
msa_data = msa_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
msa_data = msa_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
msa_data = np.zeros((embed_data.shape[0], 199))
embed_data = np.concatenate([embed_data, msa_data], axis=1)
if self.add_ptm:
ptm_data = utils.get_ptm_from_mutation(mutation, self.ptm_ref)
embed_data = np.concatenate([embed_data, ptm_data], axis=1)
# replace the embedding with the mutation, note pos is 1-based
# but we don't modify the embedding matrix, instead we return a mask matrix
embed_data_mask = np.ones_like(embed_data)
embed_data_mask[mask_idx] = 0
# prepare node vector features
# get CA_coords
CA_coord = coords[:, 3]
CB_coord = coords[:, 4]
# add CB_coord for GLY
CB_coord[np.isnan(CB_coord)] = CA_coord[np.isnan(CB_coord)]
if self.graph_type == '1d-neighbor':
CA_coord[:, 0] = np.arange(coords.shape[0])
CB_coord[:, 0] = np.arange(coords.shape[0])
coords = np.zeros_like(coords)
CA_CB = coords[:, [4]] - coords[:, [3]] # Note that glycine does not have CB
CA_CB[np.isnan(CA_CB)] = 0
# Change the CA_CB of the mutated residue to 0
# but we don't modify the CA_CB matrix, instead we return a mask matrix
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.transpose(np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1), (0, 2, 1))
# if self.add_sidechain:
# get sidechain coords
sidechain_nodes_vector = coords[:, 5:] - coords[:, [3]]
sidechain_nodes_vector[np.isnan(sidechain_nodes_vector)] = 0
sidechain_nodes_vector = np.transpose(sidechain_nodes_vector, (0, 2, 1))
nodes_vector = np.concatenate([nodes_vector, sidechain_nodes_vector], axis=2)
# prepare graph
features = dict(
embed_logits=embed_logits if self.node_embedding_type == 'one-hot-idx' else None,
one_hot_mat=one_hot_mat if self.node_embedding_type.startswith('one-hot') else None,
mask_idx=mask_idx,
embed_data=embed_data,
embed_data_mask=embed_data_mask,
alt_embed_data=None,
coords=coords,
CA_coord=CA_coord,
CB_coord=CB_coord,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
nodes_vector=nodes_vector,
)
if self.add_confidence:
# add position wise confidence
if self.add_plddt:
features['plddt'] = confidence_data
if self.loaded_confidence:
pae = self.af2_confidence_dict[mutation.af2_seq_index]
else:
pae = utils.get_confidence_from_af2file(mutation.af2_file, self.af2_plddt_dict[mutation.af2_seq_index])
if mutation.crop:
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
else:
# get plddt
plddt_data = utils.get_plddt_from_af2(mutation.af2_file)
pae = utils.get_confidence_from_af2file(mutation.af2_file, plddt_data)
if mutation.crop:
confidence_data = plddt_data[mutation.seq_start - 1: mutation.seq_end] / 100
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
if confidence_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {confidence_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
confidence_data = np.ones_like(embed_data[:, 0]) * 0.8
features['plddt'] = confidence_data
# add pairwise confidence
features['edge_confidence'] = pae[edge_index[0], edge_index[1]]
features['edge_confidence_star'] = pae[edge_index_star[0], edge_index_star[1]]
return features
def get(self, idx):
features_np = self.get_one_mutation(idx)
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
features = dict(
x=x,
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool),
x_alt=torch.zeros_like(x),
pos=torch.from_numpy(features_np['CA_coord']).to(torch.float32) if not self.use_cb else torch.from_numpy(features_np['CB_coord']).to(torch.float32),
edge_index=torch.from_numpy(features_np['edge_index']).to(torch.long),
edge_index_star=torch.from_numpy(features_np['edge_index_star']).to(torch.long),
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32),
edge_attr_star=torch.from_numpy(features_np['edge_attr_star']).to(torch.float32),
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32),
)
if self.add_confidence:
features['plddt'] = torch.from_numpy(features_np['plddt']).to(torch.float32)
features['edge_confidence'] = torch.from_numpy(features_np['edge_confidence']).to(torch.float32)
features['edge_confidence_star'] = torch.from_numpy(features_np['edge_confidence_star']).to(torch.float32)
if self.neighbor_type == 'radius' or self.neighbor_type == 'radius-KNN':
# first concat edge_index and edge_index_star
concat_edge_index = torch.cat((features["edge_index"], features["edge_index_star"]), dim=1)
concat_edge_attr = torch.cat((features["edge_attr"], features["edge_attr_star"]), dim=0)
# then remove isolated nodes
concat_edge_index, concat_edge_attr, mask = \
remove_isolated_nodes(concat_edge_index, concat_edge_attr, x.shape[0])
# then split edge_index and edge_attr
features["edge_index"] = concat_edge_index[:, :features["edge_index"].shape[1]]
features["edge_index_star"] = concat_edge_index[:, features["edge_index"].shape[1]:]
features["edge_attr"] = concat_edge_attr[:features["edge_attr"].shape[0]]
features["edge_attr_star"] = concat_edge_attr[features["edge_attr"].shape[0]:]
else:
features["edge_index"], features["edge_attr"], mask = \
remove_isolated_nodes(features["edge_index"], features["edge_attr"], x.shape[0])
features["edge_index_star"], features["edge_attr_star"], mask = \
remove_isolated_nodes(features["edge_index_star"], features["edge_attr_star"], x.shape[0])
features["x"] = features["x"][mask]
features["x_mask"] = features["x_mask"][mask]
features["x_alt"] = features["x_alt"][mask]
features["pos"] = features["pos"][mask]
features["node_vec_attr"] = features["node_vec_attr"][mask]
# need to process y, which is separated by comma and float
y_scores = self.data[self._y_columns].iloc[int(idx)]
# if mask exists, we need to mask the y_scores
if len(self._y_mask_columns) > 0:
y_masks = self.data[self._y_mask_columns].iloc[int(idx)]
else:
# create fake y_masks that are all None
y_masks = [None] * len(y_scores)
# we need a y that is 1 x 20 x n that depends on the length of y_scores
y = torch.zeros([1, len(utils.AA_DICT_HUMAN), len(y_scores)]).to(torch.float32)
y_mask = torch.zeros_like(y)
# y_score might be multi-dimensional
# need another y_mask that is 1 x 20 x n, to tell which location is target
for i in range(len(y_scores)):
y_scores_i = np.array(y_scores[i].split(';')).astype(np.float32) if isinstance(y_scores[i], str) else np.array([y_scores[i]]).astype(np.float32)
if y_masks[i] is not None:
y_masks_i = np.array(y_masks[i].split(';')).astype(np.float32) if isinstance(y_masks[i], str) else np.array([y_masks[i]]).astype(np.float32)
else:
y_masks_i = np.ones_like(y_scores_i)
# match the values in y based on AA_DICT
alt_aa_idxs = [utils.AA_DICT_HUMAN.index(aa) if aa != 'X' else 19 for aa in self.mutations[idx].alt_aa]
y[0, alt_aa_idxs, i] = torch.from_numpy(y_scores_i)
y_mask[0, alt_aa_idxs, i] = torch.from_numpy(y_masks_i)
features["y"] = y.to(torch.float32)
features["score_mask"] = y_mask.to(torch.float32)
return Data(**features)
class GraphESMMutationDataset(GraphMutationDataset):
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = None,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim', 'esm1b'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
scale_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_sidechain: bool = False,
local_coord_transform: bool = False,
use_cb: bool = False,
add_msa_contacts: bool = True,
add_dssp: bool = False,
add_msa: bool = False,
add_confidence: bool = False,
loaded_confidence: bool = False,
loaded_esm: bool = False,
add_ptm: bool = False,
data_augment: bool = False,
score_transfer: bool = False,
alt_type: Literal['alt', 'concat', 'diff', 'orig'] = 'orig',
computed_graph: bool = True,
loaded_msa: bool = False,
neighbor_type: Literal['KNN', 'radius', 'radius-KNN'] = 'KNN',
max_len = 2251,
convert_to_onesite: bool = False,
add_af2_single: bool = False,
add_af2_pairwise: bool = False,
loaded_af2_single: bool = False,
loaded_af2_pairwise: bool = False,
):
super(GraphESMMutationDataset, self).__init__(
data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, add_plddt, scale_plddt,
add_conservation, add_position, add_sidechain,
local_coord_transform, use_cb, add_msa_contacts, add_dssp,
add_msa, add_confidence, loaded_confidence, loaded_esm,
add_ptm, data_augment, score_transfer, alt_type,
computed_graph, loaded_msa, neighbor_type, max_len)
self._y_mask_columns = self.data.columns[self.data.columns.str.startswith('confidence.score')]
def get_one_mutation(self, idx):
mutation: utils.Mutation = self.mutations[idx]
# get the graph
coords, edge_index, edge_index_star, edge_attr, edge_attr_star, mask_idx, mutation = self.get_graph_and_mask(mutation)
# get embeddings
if self.node_embedding_type == 'esm':
if self.loaded_esm:
# esm embeddings have <start> token, so starts at 1
embed_data = self.esm_dict[mutation.esm_seq_index][mutation.seq_start:mutation.seq_end + 1]
else:
embed_data = utils.get_embedding_from_esm2(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
elif self.node_embedding_type == 'one-hot-idx':
assert not self.add_conservation and not self.add_plddt
embed_logits, embed_data, one_hot_mat = utils.get_embedding_from_onehot_nonzero(mutation.seq, return_idx=True, return_onehot_mat=True)
elif self.node_embedding_type == 'one-hot':
embed_data, one_hot_mat = utils.get_embedding_from_onehot(mutation.seq, return_idx=False, return_onehot_mat=True)
elif self.node_embedding_type == 'aa-5dim':
embed_data = utils.get_embedding_from_5dim(mutation.seq)
elif self.node_embedding_type == 'esm1b':
embed_data = utils.get_embedding_from_esm1b(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
# add conservation, if needed
if self.loaded_msa and (self.add_msa or self.add_conservation):
msa_seq = self.msa_dict[mutation.msa_seq_index][0]
conservation_data = self.msa_dict[mutation.msa_seq_index][1]
msa_data = self.msa_dict[mutation.msa_seq_index][2]
else:
if self.add_conservation or self.add_msa:
msa_seq, conservation_data, msa_data = utils.get_msa_dict_from_transcript(mutation.uniprot_id)
if self.add_conservation:
if conservation_data.shape[0] == 0:
conservation_data = np.zeros((embed_data.shape[0], 20))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
conservation_data = conservation_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
conservation_data = conservation_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
self.unmatched_msa += 1
print(f'Unmatched MSA: {self.unmatched_msa}')
conservation_data = np.zeros((embed_data.shape[0], 20))
embed_data = np.concatenate([embed_data, conservation_data], axis=1)
# add pLDDT, if needed
if self.add_plddt:
# get plddt
plddt_data = self.af2_plddt_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if mutation.crop:
plddt_data = plddt_data[mutation.seq_start - 1: mutation.seq_end]
if self.add_confidence:
confidence_data = plddt_data / 100
if plddt_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {plddt_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
plddt_data = np.ones_like(embed_data[:, 0]) * 50
if self.add_confidence:
# assign 0.5 confidence to all points
confidence_data = np.ones_like(embed_data[:, 0]) / 2
if self.scale_plddt:
plddt_data = plddt_data / 100
embed_data = np.concatenate([embed_data, plddt_data[:, None]], axis=1)
# add dssp, if needed
if self.add_dssp:
# get dssp
dssp_data = self.af2_dssp_dict[mutation.af2_seq_index]
if mutation.crop:
dssp_data = dssp_data[mutation.seq_start - 1: mutation.seq_end]
if dssp_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'DSSP {dssp_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'DSSP file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
dssp_data = np.zeros_like(embed_data[:, 0])
# if dssp_data size axis is 1, add a dimension
if len(dssp_data.shape) == 1:
dssp_data = dssp_data[:, None]
embed_data = np.concatenate([embed_data, dssp_data], axis=1)
if self.add_msa:
if msa_data.shape[0] == 0:
msa_data = np.zeros((embed_data.shape[0], 199))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
msa_data = msa_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
msa_data = msa_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
msa_data = np.zeros((embed_data.shape[0], 199))
embed_data = np.concatenate([embed_data, msa_data], axis=1)
if self.add_ptm:
ptm_data = utils.get_ptm_from_mutation(mutation, self.ptm_ref)
embed_data = np.concatenate([embed_data, ptm_data], axis=1)
# replace the embedding with the mutation, note pos is 1-based
# but we don't modify the embedding matrix, instead we return a mask matrix
embed_data_mask = np.ones_like(embed_data)
embed_data_mask[mask_idx] = 0
# prepare node vector features
# get CA_coords
CA_coord = coords[:, 3]
CB_coord = coords[:, 4]
# add CB_coord for GLY
CB_coord[np.isnan(CB_coord)] = CA_coord[np.isnan(CB_coord)]
if self.graph_type == '1d-neighbor':
CA_coord[:, 0] = np.arange(coords.shape[0])
CB_coord[:, 0] = np.arange(coords.shape[0])
coords = np.zeros_like(coords)
CA_CB = coords[:, [4]] - coords[:, [3]] # Note that glycine does not have CB
CA_CB[np.isnan(CA_CB)] = 0
# Change the CA_CB of the mutated residue to 0
# but we don't modify the CA_CB matrix, instead we return a mask matrix
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.transpose(np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1), (0, 2, 1))
# if self.add_sidechain:
# get sidechain coords
sidechain_nodes_vector = coords[:, 5:] - coords[:, [3]]
sidechain_nodes_vector[np.isnan(sidechain_nodes_vector)] = 0
sidechain_nodes_vector = np.transpose(sidechain_nodes_vector, (0, 2, 1))
nodes_vector = np.concatenate([nodes_vector, sidechain_nodes_vector], axis=2)
# prepare graph
features = dict(
embed_logits=embed_logits if self.node_embedding_type == 'one-hot-idx' else None,
one_hot_mat=one_hot_mat if self.node_embedding_type.startswith('one-hot') else None,
mask_idx=mask_idx,
embed_data=embed_data,
embed_data_mask=embed_data_mask,
alt_embed_data=None,
coords=coords,
CA_coord=CA_coord,
CB_coord=CB_coord,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
nodes_vector=nodes_vector,
)
if self.add_confidence:
# add position wise confidence
if self.add_plddt:
features['plddt'] = confidence_data
if self.loaded_confidence:
pae = self.af2_confidence_dict[mutation.af2_seq_index]
else:
pae = utils.get_confidence_from_af2file(mutation.af2_file, self.af2_plddt_dict[mutation.af2_seq_index])
if mutation.crop:
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
else:
# get plddt
plddt_data = utils.get_plddt_from_af2(mutation.af2_file)
pae = utils.get_confidence_from_af2file(mutation.af2_file, plddt_data)
if mutation.crop:
confidence_data = plddt_data[mutation.seq_start - 1: mutation.seq_end] / 100
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
if confidence_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {confidence_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
confidence_data = np.ones_like(embed_data[:, 0]) * 0.8
features['plddt'] = confidence_data
# add pairwise confidence
features['edge_confidence'] = pae[edge_index[0], edge_index[1]]
features['edge_confidence_star'] = pae[edge_index_star[0], edge_index_star[1]]
return features
def get(self, idx):
features_np = self.get_one_mutation(idx)
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
features = dict(
x=x,
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool),
x_alt=x.clone(),
pos=torch.from_numpy(features_np['CA_coord']).to(torch.float32) if not self.use_cb else torch.from_numpy(features_np['CB_coord']).to(torch.float32),
edge_index=torch.from_numpy(features_np['edge_index']).to(torch.long),
edge_index_star=torch.from_numpy(features_np['edge_index_star']).to(torch.long),
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32),
edge_attr_star=torch.from_numpy(features_np['edge_attr_star']).to(torch.float32),
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32),
)
if self.add_confidence:
features['plddt'] = torch.from_numpy(features_np['plddt']).to(torch.float32)
features['edge_confidence'] = torch.from_numpy(features_np['edge_confidence']).to(torch.float32)
features['edge_confidence_star'] = torch.from_numpy(features_np['edge_confidence_star']).to(torch.float32)
if self.neighbor_type == 'radius' or self.neighbor_type == 'radius-KNN':
# first concat edge_index and edge_index_star
concat_edge_index = torch.cat((features["edge_index"], features["edge_index_star"]), dim=1)
concat_edge_attr = torch.cat((features["edge_attr"], features["edge_attr_star"]), dim=0)
# then remove isolated nodes
concat_edge_index, concat_edge_attr, mask = \
remove_isolated_nodes(concat_edge_index, concat_edge_attr, x.shape[0])
# then split edge_index and edge_attr
features["edge_index"] = concat_edge_index[:, :features["edge_index"].shape[1]]
features["edge_index_star"] = concat_edge_index[:, features["edge_index"].shape[1]:]
features["edge_attr"] = concat_edge_attr[:features["edge_attr"].shape[0]]
features["edge_attr_star"] = concat_edge_attr[features["edge_attr"].shape[0]:]
else:
features["edge_index"], features["edge_attr"], mask = \
remove_isolated_nodes(features["edge_index"], features["edge_attr"], x.shape[0])
features["edge_index_star"], features["edge_attr_star"], mask = \
remove_isolated_nodes(features["edge_index_star"], features["edge_attr_star"], x.shape[0])
features["x"] = features["x"][mask]
features["x_mask"] = features["x_mask"][mask]
features["x_alt"] = features["x_alt"][mask]
features["pos"] = features["pos"][mask]
features["node_vec_attr"] = features["node_vec_attr"][mask]
# we need a y_mask that is 1 x ESM x n that depends on the length of y_scores
y_mask = torch.zeros([1, len(utils.ESM_TOKENS)]).to(torch.float32)
# y_score might be multi-dimensional
# need another y_mask that is 1 x 20 x n, to tell which location is target
# match the aa and ref based on ESM_TOKENS
alt_aa_idxs = [utils.ESM_TOKENS.index(aa) for aa in self.mutations[idx].alt_aa]
ref_aa_idxs = [utils.ESM_TOKENS.index(aa) for aa in self.mutations[idx].ref_aa]
y_mask[0, alt_aa_idxs] = 1
y_mask[0, ref_aa_idxs] = -1
features["y"] = torch.tensor([self.data[self._y_columns].iloc[int(idx)]]).to(torch.float32)
features["esm_mask"] = y_mask.to(torch.float32)
return Data(**features)
class FullGraphESMMutationDataset(FullGraphMutationDataset):
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = None,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim', 'esm1b'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
scale_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_sidechain: bool = False,
local_coord_transform: bool = False,
use_cb: bool = False,
add_msa_contacts: bool = True,
add_dssp: bool = False,
add_msa: bool = False,
add_confidence: bool = False,
loaded_confidence: bool = False,
loaded_esm: bool = False,
add_ptm: bool = False,
data_augment: bool = False,
score_transfer: bool = False,
alt_type: Literal['alt', 'concat', 'diff'] = 'alt',
computed_graph: bool = True,
loaded_msa: bool = False,
neighbor_type: Literal['KNN', 'radius', 'radius-KNN'] = 'KNN',
max_len = 2251,
convert_to_onesite: bool = False,
add_af2_single: bool = False,
add_af2_pairwise: bool = False,
loaded_af2_single: bool = False,
loaded_af2_pairwise: bool = False,
):
super(FullGraphESMMutationDataset, self).__init__(
data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, add_plddt, scale_plddt,
add_conservation, add_position, add_sidechain,
local_coord_transform, use_cb, add_msa_contacts, add_dssp,
add_msa, add_confidence, loaded_confidence, loaded_esm,
add_ptm, data_augment, score_transfer, alt_type,
computed_graph, loaded_msa, neighbor_type, max_len, convert_to_onesite)
self._y_mask_columns = self.data.columns[self.data.columns.str.startswith('confidence.score')]
def get_graph_and_mask(self, mutation: utils.Mutation):
# get the ordinary graph
coords: np.ndarray = self.af2_coord_dict[mutation.af2_seq_index] # N, C, O, CA, CB
# remember we could have cropped sequence
if mutation.crop:
coords = coords[mutation.seq_start - 1:mutation.seq_end, :]
# get the mask
mask_idx, mutation = self.get_mask(mutation)
# prepare edge features
# if self.add_msa_contacts:
# coevo_strength = utils.get_contacts_from_msa(mutation, False)
# if isinstance(coevo_strength, int):
# coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
# mutation.seq_end - mutation.seq_start + 1, 1])
# else:
coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
mutation.seq_end - mutation.seq_start + 1, 0])
edge_attr = coevo_strength # N, N, 1
# if add positional embedding, add it here
# if self.add_position:
# add a sin positional embedding that reflects the relative position of the residue
edge_position = np.arange(coords.shape[0])[:, None] - np.arange(coords.shape[0])[None, :]
edge_attr = np.concatenate(
(edge_attr, np.sin(np.pi / 2 * edge_position / self.max_len)[:, :, None]),
axis=2)
return coords, None, None, edge_attr, None, mask_idx, mutation
def get_one_mutation(self, idx):
mutation: utils.Mutation = self.mutations[idx]
# get the graph
coords, _, _, edge_attr, _, mask_idx, mutation = self.get_graph_and_mask(mutation)
# get embeddings
# embed data should be N x 20
embed_logits, embed_data, one_hot_mat = utils.get_embedding_from_esm_onehot(mutation.seq, return_idx=True, return_onehot_mat=True)
# mask_idx should plus 1 as we add <start> token
mask_idx += 1
# add conservation, if needed
if self.loaded_msa and (self.add_msa or self.add_conservation):
msa_seq = self.msa_dict[mutation.msa_seq_index][0]
conservation_data = self.msa_dict[mutation.msa_seq_index][1]
msa_data = self.msa_dict[mutation.msa_seq_index][2]
else:
if self.add_conservation or self.add_msa:
msa_seq, conservation_data, msa_data = utils.get_msa_dict_from_transcript(mutation.uniprot_id)
if self.add_conservation:
if conservation_data.shape[0] == 0:
conservation_data = np.zeros((embed_data.shape[0], 20))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
conservation_data = conservation_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
conservation_data = conservation_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
self.unmatched_msa += 1
print(f'Unmatched MSA: {self.unmatched_msa}')
conservation_data = np.zeros((embed_data.shape[0], 20))
embed_data = np.concatenate([embed_data, conservation_data], axis=1)
# add pLDDT, if needed
if self.add_plddt:
# get plddt
plddt_data = self.af2_plddt_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if mutation.crop:
plddt_data = plddt_data[mutation.seq_start - 1: mutation.seq_end]
if self.add_confidence:
confidence_data = plddt_data / 100
if plddt_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {plddt_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
plddt_data = np.ones_like(embed_data[:, 0]) * 50
if self.add_confidence:
# assign 0.5 confidence to all points
confidence_data = np.ones_like(embed_data[:, 0]) / 2
if self.scale_plddt:
plddt_data = plddt_data / 100
embed_data = np.concatenate([embed_data, plddt_data[:, None]], axis=1)
# add dssp, if needed
if self.add_dssp:
# get dssp
dssp_data = self.af2_dssp_dict[mutation.af2_seq_index]
if mutation.crop:
dssp_data = dssp_data[mutation.seq_start - 1: mutation.seq_end]
if dssp_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'DSSP {dssp_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'DSSP file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
dssp_data = np.zeros_like(embed_data[:, 0])
# if dssp_data size axis is 1, add a dimension
if len(dssp_data.shape) == 1:
dssp_data = dssp_data[:, None]
embed_data = np.concatenate([embed_data, dssp_data], axis=1)
if self.add_msa:
if msa_data.shape[0] == 0:
msa_data = np.zeros((embed_data.shape[0], 199))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
msa_data = msa_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
msa_data = msa_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
msa_data = np.zeros((embed_data.shape[0], 199))
embed_data = np.concatenate([embed_data, msa_data], axis=1)
if self.add_ptm:
ptm_data = utils.get_ptm_from_mutation(mutation, self.ptm_ref)
embed_data = np.concatenate([embed_data, ptm_data], axis=1)
# replace the embedding with the mutation, note pos is 1-based
# but we don't modify the embedding matrix, instead we return a mask matrix
embed_data_mask = np.ones_like(embed_data)
embed_data_mask[mask_idx] = 0
# prepare node vector features
# get CA_coords
CA_coord = coords[:, 3]
CB_coord = coords[:, 4]
# add CB_coord for GLY
CB_coord[np.isnan(CB_coord)] = CA_coord[np.isnan(CB_coord)]
if self.graph_type == '1d-neighbor':
CA_coord[:, 0] = np.arange(coords.shape[0])
CB_coord[:, 0] = np.arange(coords.shape[0])
coords = np.zeros_like(coords)
CA_CB = coords[:, [4]] - coords[:, [3]] # Note that glycine does not have CB
CA_CB[np.isnan(CA_CB)] = 0
# Change the CA_CB of the mutated residue to 0
# but we don't modify the CA_CB matrix, instead we return a mask matrix
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.transpose(np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1), (0, 2, 1))
# if self.add_sidechain:
# get sidechain coords
sidechain_nodes_vector = coords[:, 5:] - coords[:, [3]]
sidechain_nodes_vector[np.isnan(sidechain_nodes_vector)] = 0
sidechain_nodes_vector = np.transpose(sidechain_nodes_vector, (0, 2, 1))
nodes_vector = np.concatenate([nodes_vector, sidechain_nodes_vector], axis=2)
# prepare graph
features = dict(
embed_logits=None,
one_hot_mat=None,
mask_idx=mask_idx,
embed_data=embed_data,
embed_data_mask=embed_data_mask,
alt_embed_data=None,
coords=coords,
CA_coord=CA_coord,
CB_coord=CB_coord,
edge_index=None,
edge_index_star=None,
edge_attr=edge_attr,
edge_attr_star=None,
nodes_vector=nodes_vector,
)
if self.add_confidence:
# add position wise confidence
if self.add_plddt:
features['plddt'] = confidence_data
if self.loaded_confidence:
pae = self.af2_confidence_dict[mutation.af2_seq_index]
else:
pae = utils.get_confidence_from_af2file(mutation.af2_file, self.af2_plddt_dict[mutation.af2_seq_index])
if mutation.crop:
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
else:
# get plddt
plddt_data = utils.get_plddt_from_af2(mutation.af2_file)
pae = utils.get_confidence_from_af2file(mutation.af2_file, plddt_data)
if mutation.crop:
confidence_data = plddt_data[mutation.seq_start - 1: mutation.seq_end] / 100
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
if confidence_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {confidence_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
confidence_data = np.ones_like(embed_data[:, 0]) * 0.8
features['plddt'] = confidence_data
# add pairwise confidence
features['edge_confidence'] = pae
return features
def get(self, idx):
start = time.time()
features_np = self.get_one_mutation(idx)
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
# padding x to the max length
# x_padding_mask = torch.zeros(self.max_len, dtype=torch.bool)
pos=torch.from_numpy(features_np['CB_coord']).to(torch.float32) if self.use_cb else torch.from_numpy(features_np['CA_coord']).to(torch.float32)
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32)
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32)
x_mask=torch.from_numpy(features_np['embed_data_mask']).to(torch.bool)
if self.add_confidence:
plddt=torch.from_numpy(features_np['plddt']).to(torch.float32)
if x.shape[0] < self.max_len + 2:
# x_padding_mask[x.shape[0]:] = True
x = torch.nn.functional.pad(x, (0, self.max_len + 2 - x.shape[0]), 'constant', utils.ESM_TOKENS.index('<pad>'))
# pos = torch.nn.functional.pad(pos, (0, 0, 0, self.max_len + 2 - pos.shape[0]))
# node_vec_attr = torch.nn.functional.pad(node_vec_attr, (0, 0, 0, 0, 0, self.max_len + 2 - node_vec_attr.shape[0]))
# edge_attr = torch.nn.functional.pad(edge_attr, (0, 0, 0, self.max_len + 2 - edge_attr.shape[0], 0, self.max_len + 2 - edge_attr.shape[0]))
x_mask = torch.nn.functional.pad(x_mask, (0, self.max_len + 2 - x_mask.shape[0]), 'constant', True)
# if self.add_confidence:
# edge_confidence = torch.nn.functional.pad(edge_confidence, (0, self.max_len + 2 - edge_confidence.shape[0], 0, self.max_len + 2 - edge_confidence.shape[0]))
# plddt = torch.nn.functional.pad(plddt, (0, self.max_len + 2 - plddt.shape[0]))
# we need a y that is 1 x 20 x n that depends on the length of y_scores
y_mask = torch.zeros([len(utils.ESM_TOKENS)]).to(torch.float32)
# y_score might be multi-dimensional
# need another y_mask that is 1 x 20 x n, to tell which location is target
# match the aa and ref based on ESM_TOKENS
alt_aa_idxs = [utils.ESM_TOKENS.index(aa) for aa in self.mutations[idx].alt_aa]
ref_aa_idxs = [utils.ESM_TOKENS.index(aa) for aa in self.mutations[idx].ref_aa]
y_mask[alt_aa_idxs] = 1
y_mask[ref_aa_idxs] = -1
features = dict(
x=x,
# x_padding_mask=x_padding_mask,
x_mask=x_mask,
x_alt=torch.ones_like(x) * utils.ESM_TOKENS.index('<mask>'),
# pos=pos,
# edge_attr=edge_attr,
# node_vec_attr=None,
y=torch.tensor([self.data[self._y_columns].iloc[int(idx)]]).to(torch.float32).squeeze(1),
esm_mask=y_mask.to(torch.float32),
)
end = time.time()
print(f'get time: {end - start}')
return features
class FullGraphMultiOnesiteMutationDataset(FullGraphMutationDataset):
def __init__(self, data_file, data_type: str,
radius: float = None, max_neighbors: int = None,
loop: bool = False, shuffle: bool = False, gpu_id: int = None,
node_embedding_type: Literal['esm', 'one-hot-idx', 'one-hot', 'aa-5dim', 'esm1b'] = 'esm',
graph_type: Literal['af2', '1d-neighbor'] = 'af2',
add_plddt: bool = False,
scale_plddt: bool = False,
add_conservation: bool = False,
add_position: bool = False,
add_sidechain: bool = False,
local_coord_transform: bool = False,
use_cb: bool = False,
add_msa_contacts: bool = True,
add_dssp: bool = False,
add_msa: bool = False,
add_confidence: bool = False,
loaded_confidence: bool = False,
loaded_esm: bool = False,
add_ptm: bool = False,
data_augment: bool = False,
score_transfer: bool = False,
alt_type: Literal['alt', 'concat', 'diff'] = 'alt',
computed_graph: bool = True,
loaded_msa: bool = False,
neighbor_type: Literal['KNN', 'radius', 'radius-KNN'] = 'KNN',
max_len = 2251,
convert_to_onesite: bool = False,
add_af2_single: bool = False,
add_af2_pairwise: bool = False,
loaded_af2_single: bool = False,
loaded_af2_pairwise: bool = False,
):
super(FullGraphMultiOnesiteMutationDataset, self).__init__(
data_file, data_type, radius, max_neighbors, loop, shuffle, gpu_id,
node_embedding_type, graph_type, add_plddt, scale_plddt,
add_conservation, add_position, add_sidechain,
local_coord_transform, use_cb, add_msa_contacts, add_dssp,
add_msa, add_confidence, loaded_confidence, loaded_esm,
add_ptm, data_augment, score_transfer, alt_type,
computed_graph, loaded_msa, neighbor_type, max_len, convert_to_onesite)
self._y_mask_columns = self.data.columns[self.data.columns.str.startswith('confidence.score')]
def get_graph_and_mask(self, mutation: utils.Mutation):
# get the ordinary graph
coords: np.ndarray = self.af2_coord_dict[mutation.af2_seq_index] # N, C, O, CA, CB
# remember we could have cropped sequence
if mutation.crop:
coords = coords[mutation.seq_start - 1:mutation.seq_end, :]
# get the mask
mask_idx, mutation = self.get_mask(mutation)
# prepare edge features
# if self.add_msa_contacts:
# coevo_strength = utils.get_contacts_from_msa(mutation, False)
# if isinstance(coevo_strength, int):
# coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
# mutation.seq_end - mutation.seq_start + 1, 1])
# else:
coevo_strength = np.zeros([mutation.seq_end - mutation.seq_start + 1,
mutation.seq_end - mutation.seq_start + 1, 0])
edge_attr = coevo_strength # N, N, 1
# if add positional embedding, add it here
# if self.add_position:
# add a sin positional embedding that reflects the relative position of the residue
edge_position = np.arange(coords.shape[0])[:, None] - np.arange(coords.shape[0])[None, :]
edge_attr = np.concatenate(
(edge_attr, np.sin(np.pi / 2 * edge_position / self.max_len)[:, :, None]),
axis=2)
return coords, None, None, edge_attr, None, mask_idx, mutation
def get_one_mutation(self, idx):
mutation: utils.Mutation = self.mutations[idx]
# get the graph
coords, _, _, edge_attr, _, mask_idx, mutation = self.get_graph_and_mask(mutation)
# get embeddings
if self.node_embedding_type == 'esm':
if self.loaded_esm:
# esm embeddings have <start> token, so starts at 1
embed_data = self.esm_dict[mutation.esm_seq_index][mutation.seq_start:mutation.seq_end + 1]
else:
embed_data = utils.get_embedding_from_esm2(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
elif self.node_embedding_type == 'one-hot-idx':
assert not self.add_conservation and not self.add_plddt
embed_logits, embed_data, one_hot_mat = utils.get_embedding_from_onehot_nonzero(mutation.seq, return_idx=True, return_onehot_mat=True)
elif self.node_embedding_type == 'one-hot':
embed_data, one_hot_mat = utils.get_embedding_from_onehot(mutation.seq, return_idx=False, return_onehot_mat=True)
elif self.node_embedding_type == 'aa-5dim':
embed_data = utils.get_embedding_from_5dim(mutation.seq)
elif self.node_embedding_type == 'esm1b':
embed_data = utils.get_embedding_from_esm1b(mutation.ESM_prefix, False,
mutation.seq_start, mutation.seq_end)
# add conservation, if needed
if self.loaded_msa and (self.add_msa or self.add_conservation):
msa_seq = self.msa_dict[mutation.msa_seq_index][0]
conservation_data = self.msa_dict[mutation.msa_seq_index][1]
msa_data = self.msa_dict[mutation.msa_seq_index][2]
else:
if self.add_conservation or self.add_msa:
msa_seq, conservation_data, msa_data = utils.get_msa_dict_from_transcript(mutation.uniprot_id)
if self.add_conservation:
if conservation_data.shape[0] == 0:
conservation_data = np.zeros((embed_data.shape[0], 20))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
conservation_data = conservation_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
conservation_data = conservation_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
# warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
self.unmatched_msa += 1
print(f'Unmatched MSA: {self.unmatched_msa}')
conservation_data = np.zeros((embed_data.shape[0], 20))
embed_data = np.concatenate([embed_data, conservation_data], axis=1)
# add pLDDT, if needed
if self.add_plddt:
# get plddt
plddt_data = self.af2_plddt_dict[mutation.af2_seq_index] # N, C, O, CA, CB
if mutation.crop:
plddt_data = plddt_data[mutation.seq_start - 1: mutation.seq_end]
if self.add_confidence:
confidence_data = plddt_data / 100
if plddt_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {plddt_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
plddt_data = np.ones_like(embed_data[:, 0]) * 50
if self.add_confidence:
# assign 0.5 confidence to all points
confidence_data = np.ones_like(embed_data[:, 0]) / 2
if self.scale_plddt:
plddt_data = plddt_data / 100
embed_data = np.concatenate([embed_data, plddt_data[:, None]], axis=1)
# add dssp, if needed
if self.add_dssp:
# get dssp
dssp_data = self.af2_dssp_dict[mutation.af2_seq_index]
if mutation.crop:
dssp_data = dssp_data[mutation.seq_start - 1: mutation.seq_end]
if dssp_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'DSSP {dssp_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'DSSP file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
dssp_data = np.zeros_like(embed_data[:, 0])
# if dssp_data size axis is 1, add a dimension
if len(dssp_data.shape) == 1:
dssp_data = dssp_data[:, None]
embed_data = np.concatenate([embed_data, dssp_data], axis=1)
if self.add_msa:
if msa_data.shape[0] == 0:
msa_data = np.zeros((embed_data.shape[0], 199))
else:
msa_seq_check = msa_seq[mutation.seq_start_orig - 1: mutation.seq_end_orig]
msa_data = msa_data[mutation.seq_start_orig - 1: mutation.seq_end_orig]
if mutation.crop:
msa_seq_check = msa_seq_check[mutation.seq_start - 1: mutation.seq_end]
msa_data = msa_data[mutation.seq_start - 1: mutation.seq_end]
if msa_seq_check != mutation.seq:
warnings.warn(f'MSA file: {mutation.transcript_id} does not match mutation sequence')
msa_data = np.zeros((embed_data.shape[0], 199))
embed_data = np.concatenate([embed_data, msa_data], axis=1)
if self.add_ptm:
ptm_data = utils.get_ptm_from_mutation(mutation, self.ptm_ref)
embed_data = np.concatenate([embed_data, ptm_data], axis=1)
# replace the embedding with the mutation, note pos is 1-based
# but we don't modify the embedding matrix, instead we return a mask matrix
embed_data_mask = np.ones_like(embed_data)
embed_data_mask[mask_idx] = 0
# prepare node vector features
# get CA_coords
CA_coord = coords[:, 3]
CB_coord = coords[:, 4]
# add CB_coord for GLY
CB_coord[np.isnan(CB_coord)] = CA_coord[np.isnan(CB_coord)]
if self.graph_type == '1d-neighbor':
CA_coord[:, 0] = np.arange(coords.shape[0])
CB_coord[:, 0] = np.arange(coords.shape[0])
coords = np.zeros_like(coords)
CA_CB = coords[:, [4]] - coords[:, [3]] # Note that glycine does not have CB
CA_CB[np.isnan(CA_CB)] = 0
# Change the CA_CB of the mutated residue to 0
# but we don't modify the CA_CB matrix, instead we return a mask matrix
CA_C = coords[:, [1]] - coords[:, [3]]
CA_O = coords[:, [2]] - coords[:, [3]]
CA_N = coords[:, [0]] - coords[:, [3]]
nodes_vector = np.transpose(np.concatenate([CA_CB, CA_C, CA_O, CA_N], axis=1), (0, 2, 1))
# if self.add_sidechain:
# get sidechain coords
sidechain_nodes_vector = coords[:, 5:] - coords[:, [3]]
sidechain_nodes_vector[np.isnan(sidechain_nodes_vector)] = 0
sidechain_nodes_vector = np.transpose(sidechain_nodes_vector, (0, 2, 1))
nodes_vector = np.concatenate([nodes_vector, sidechain_nodes_vector], axis=2)
# prepare graph
features = dict(
embed_logits=None,
one_hot_mat=None,
mask_idx=mask_idx,
embed_data=embed_data,
embed_data_mask=embed_data_mask,
alt_embed_data=None,
coords=coords,
CA_coord=CA_coord,
CB_coord=CB_coord,
edge_index=None,
edge_index_star=None,
edge_attr=edge_attr,
edge_attr_star=None,
nodes_vector=nodes_vector,
)
if self.add_confidence:
# add position wise confidence
if self.add_plddt:
features['plddt'] = confidence_data
if self.loaded_confidence:
pae = self.af2_confidence_dict[mutation.af2_seq_index]
else:
pae = utils.get_confidence_from_af2file(mutation.af2_file, self.af2_plddt_dict[mutation.af2_seq_index])
if mutation.crop:
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
else:
# get plddt
plddt_data = utils.get_plddt_from_af2(mutation.af2_file)
pae = utils.get_confidence_from_af2file(mutation.af2_file, plddt_data)
if mutation.crop:
confidence_data = plddt_data[mutation.seq_start - 1: mutation.seq_end] / 100
pae = pae[mutation.seq_start - 1: mutation.seq_end, mutation.seq_start - 1: mutation.seq_end]
if confidence_data.shape[0] != embed_data.shape[0]:
warnings.warn(f'pLDDT {confidence_data.shape[0]} does not match embedding {embed_data.shape[0]}, '
f'pLDDT file: {mutation.af2_file}, '
f'ESM prefix: {mutation.ESM_prefix}')
confidence_data = np.ones_like(embed_data[:, 0]) * 0.8
features['plddt'] = confidence_data
# add pairwise confidence
features['edge_confidence'] = pae
return features
def get(self, idx):
features_np = self.get_one_mutation(idx)
if self.node_embedding_type == 'one-hot-idx':
x = torch.from_numpy(features_np['embed_data']).to(torch.long)
else:
x = torch.from_numpy(features_np['embed_data']).to(torch.float32)
# padding x to the max length
x_padding_mask = torch.zeros(self.max_len, dtype=torch.bool)
pos=torch.from_numpy(features_np['CB_coord']).to(torch.float32) if self.use_cb else torch.from_numpy(features_np['CA_coord']).to(torch.float32)
node_vec_attr=torch.from_numpy(features_np['nodes_vector']).to(torch.float32)
edge_attr=torch.from_numpy(features_np['edge_attr']).to(torch.float32)
x_mask=torch.from_numpy(features_np['embed_data_mask'][:, 0]).to(torch.bool)
if self.add_confidence:
plddt=torch.from_numpy(features_np['plddt']).to(torch.float32)
edge_confidence=torch.from_numpy(features_np['edge_confidence']).to(torch.float32)
if x.shape[0] < self.max_len:
x_padding_mask[x.shape[0]:] = True
x = torch.nn.functional.pad(x, (0, 0, 0, self.max_len - x.shape[0]))
pos = torch.nn.functional.pad(pos, (0, 0, 0, self.max_len - pos.shape[0]))
node_vec_attr = torch.nn.functional.pad(node_vec_attr, (0, 0, 0, 0, 0, self.max_len - node_vec_attr.shape[0]))
edge_attr = torch.nn.functional.pad(edge_attr, (0, 0, 0, self.max_len - edge_attr.shape[0], 0, self.max_len - edge_attr.shape[0]))
x_mask = torch.nn.functional.pad(x_mask, (0, self.max_len - x_mask.shape[0]), 'constant', True)
if self.add_confidence:
edge_confidence = torch.nn.functional.pad(edge_confidence, (0, self.max_len - edge_confidence.shape[0], 0, self.max_len - edge_confidence.shape[0]))
plddt = torch.nn.functional.pad(plddt, (0, self.max_len - plddt.shape[0]))
# need to process y, which is separated by comma and float
y_scores = self.data[self._y_columns].iloc[int(idx)]
# if mask exists, we need to mask the y_scores
if len(self._y_mask_columns) > 0:
y_masks = self.data[self._y_mask_columns].iloc[int(idx)]
else:
# create fake y_masks that are all None
y_masks = [None] * len(y_scores)
# we need a y that is 1 x 20 x n that depends on the length of y_scores
y = torch.zeros([len(utils.AA_DICT_HUMAN), len(y_scores)]).to(torch.float32)
y_mask = torch.zeros_like(y)
# y_score might be multi-dimensional
# need another y_mask that is 1 x 20 x n, to tell which location is target
for i in range(len(y_scores)):
y_scores_i = np.array(y_scores[i].split(';')).astype(np.float32) if isinstance(y_scores[i], str) else np.array([y_scores[i]]).astype(np.float32)
if y_masks[i] is not None:
y_masks_i = np.array(y_masks[i].split(';')).astype(np.float32) if isinstance(y_masks[i], str) else np.array([y_masks[i]]).astype(np.float32)
else:
y_masks_i = np.ones_like(y_scores_i)
# match the values in y based on AA_DICT
alt_aa_idxs = [utils.AA_DICT_HUMAN.index(aa) for aa in self.mutations[idx].alt_aa]
y[alt_aa_idxs, i] = torch.from_numpy(y_scores_i)
y_mask[alt_aa_idxs, i] = torch.from_numpy(y_masks_i)
# don't need x_alt, but just make it zeros and same size as x
features = dict(
x=x,
x_padding_mask=x_padding_mask,
x_mask=x_mask,
x_alt=torch.zeros_like(x),
pos=pos,
edge_attr=edge_attr,
node_vec_attr=node_vec_attr,
y=y.to(torch.float32),
score_mask=y_mask.to(torch.float32),
)
if self.add_confidence:
features['plddt'] = plddt
features['edge_confidence'] = edge_confidence
return features
# Not used in this version
def collate(
data_list: List[BaseData],
increment: bool = True,
add_batch: bool = True,
) -> BaseData:
# Collates a list of `data` objects into a single object of type `cls`.
# `collate` can handle both homogeneous and heterogeneous data objects by
# individually collating all their stores.
# In addition, `collate` can handle nested data structures such as
# dictionaries and lists.
if not isinstance(data_list, (list, tuple)):
# Materialize `data_list` to keep the `_parent` weakref alive.
data_list = list(data_list)
if cls != data_list[0].__class__:
out = cls(_base_cls=data_list[0].__class__) # Dynamic inheritance.
else:
out = cls()
# Create empty stores:
out.stores_as(data_list[0])
follow_batch = set(follow_batch or [])
exclude_keys = set(exclude_keys or [])
# Group all storage objects of every data object in the `data_list` by key,
# i.e. `key_to_store_list = { key: [store_1, store_2, ...], ... }`:
key_to_stores = defaultdict(list)
for data in data_list:
for store in data.stores:
key_to_stores[store._key].append(store)
# With this, we iterate over each list of storage objects and recursively
# collate all its attributes into a unified representation:
# We maintain two additional dictionaries:
# * `slice_dict` stores a compressed index representation of each attribute
# and is needed to re-construct individual elements from mini-batches.
# * `inc_dict` stores how individual elements need to be incremented, e.g.,
# `edge_index` is incremented by the cumulated sum of previous elements.
# We also need to make use of `inc_dict` when re-constructuing individual
# elements as attributes that got incremented need to be decremented
# while separating to obtain original values.
device = None
slice_dict, inc_dict = defaultdict(dict), defaultdict(dict)
for out_store in out.stores:
key = out_store._key
stores = key_to_stores[key]
for attr in stores[0].keys():
if attr in exclude_keys: # Do not include top-level attribute.
continue
values = [store[attr] for store in stores]
# The `num_nodes` attribute needs special treatment, as we need to
# sum their values up instead of merging them to a list:
if attr == 'num_nodes':
out_store._num_nodes = values
out_store.num_nodes = sum(values)
continue
# Skip batching of `ptr` vectors for now:
if attr == 'ptr':
continue
# Collate attributes into a unified representation:
value, slices, incs = _collate(attr, values, data_list, stores,
increment)
if isinstance(value, Tensor) and value.is_cuda:
device = value.device
out_store[attr] = value
if key is not None:
slice_dict[key][attr] = slices
inc_dict[key][attr] = incs
else:
slice_dict[attr] = slices
inc_dict[attr] = incs
# Add an additional batch vector for the given attribute:
if attr in follow_batch:
batch, ptr = _batch_and_ptr(slices, device)
out_store[f'{attr}_batch'] = batch
out_store[f'{attr}_ptr'] = ptr
# In case the storage holds node, we add a top-level batch vector it:
if (add_batch and isinstance(stores[0], NodeStorage)
and stores[0].can_infer_num_nodes):
repeats = [store.num_nodes for store in stores]
out_store.batch = repeat_interleave(repeats, device=device)
out_store.ptr = cumsum(torch.tensor(repeats, device=device))
return out
def my_collate_fn(data_list: List[Any]) -> Any:
batch = collate(
data_list=data_list,
increment=True,
add_batch=True,
)
batch._num_graphs = len(data_list)
return batch