--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-cat_or_dog results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.996 --- # vit-base-cat_or_dog This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0163 - Accuracy: 0.996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0948 | 1.0 | 32 | 0.0382 | 0.994 | | 0.045 | 2.0 | 64 | 0.0209 | 0.996 | | 0.0421 | 3.0 | 96 | 0.0175 | 0.996 | | 0.0223 | 4.0 | 128 | 0.0169 | 0.996 | | 0.025 | 5.0 | 160 | 0.0163 | 0.996 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2