File size: 2,627 Bytes
c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 c678e11 c4f58c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-br
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-br
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co./facebook/w2v-bert-2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6660
- Wer: 42.4942
- Cer: 13.6525
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.08
- lr_scheduler_warmup_steps: 500
- training_steps: 8001
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.0369 | 0.58 | 500 | 1.2289 | 85.3288 | 32.8021 |
| 0.7211 | 1.16 | 1000 | 0.9727 | 70.1973 | 24.6147 |
| 0.5669 | 1.75 | 1500 | 0.8496 | 64.6176 | 21.7978 |
| 0.4229 | 2.33 | 2000 | 0.7448 | 57.2663 | 19.3988 |
| 0.4352 | 2.91 | 2500 | 0.6749 | 52.9790 | 17.4075 |
| 0.3392 | 3.49 | 3000 | 0.6703 | 50.9678 | 16.8375 |
| 0.2508 | 4.07 | 3500 | 0.6143 | 49.6249 | 16.2547 |
| 0.2303 | 4.65 | 4000 | 0.7121 | 48.4648 | 15.8534 |
| 0.1776 | 5.24 | 4500 | 0.6667 | 47.0777 | 15.2910 |
| 0.1645 | 5.82 | 5000 | 0.6715 | 46.1825 | 14.8910 |
| 0.1304 | 6.4 | 5500 | 0.7212 | 44.2784 | 14.5139 |
| 0.1157 | 6.98 | 6000 | 0.6678 | 44.2721 | 14.3043 |
| 0.0924 | 7.56 | 6500 | 0.6935 | 43.1310 | 13.9171 |
| 0.0517 | 8.14 | 7000 | 0.6746 | 42.8851 | 13.7599 |
| 0.0667 | 8.73 | 7500 | 0.6327 | 42.9733 | 13.8136 |
| 0.0483 | 9.31 | 8000 | 0.6660 | 42.4942 | 13.6525 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2
|