--- license: mit language: - en tags: - material - pbr - svbrdf - texture - editing --- # MatFuse: Controllable Material Generation with Diffusion Models ## ๐Ÿงฉ Model Overview MatFuse leverages diffusion models to simplify the creation of Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) maps. It allows for fine-grained control over material synthesis through multiple conditioning sources like color palettes, sketches, text, and images. Additionally, it supports post-generation editing of materials. For more details, visit the [project page](https://gvecchio.com/matfuse/) or read the full paper on [arXiv](https://arxiv.org/abs/2308.11408). ## ๐Ÿง‘โ€๐Ÿ’ป Usage ### ๐Ÿ’ฟ Installation 1. Clone the repository: ```bash git clone https://github.com/giuvecchio/matfuse-sd.git cd matfuse-sd ``` 2. Set up the environment: ```bash # create environment (can use venv instead of conda) conda create -n matfuse python==3.10.13 conda activate matfuse # install required packages pip install -r requirements.txt ``` 3. Download the checkpoint. ### ๐Ÿงช Inference To run inference on a trained model: ```bash python src/gradio_app.py --ckpt --config src/configs/diffusion/ ``` ## ๐Ÿ“œ Citation ```bibtex @inproceedings{vecchio2024matfuse, author = {Vecchio, Giuseppe and Sortino, Renato and Palazzo, Simone and Spampinato, Concetto}, title = {MatFuse: Controllable Material Generation with Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {4429-4438} } ``` ## License This project is licensed under the MIT License.