File size: 1,786 Bytes
6a13de5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
language:
- en
tags:
- material
- pbr
- svbrdf
- texture
- editing
---
# MatFuse: Controllable Material Generation with Diffusion Models
## 🧩 Model Overview
MatFuse leverages diffusion models to simplify the creation of Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) maps.
It allows for fine-grained control over material synthesis through multiple conditioning sources like color palettes, sketches, text, and images.
Additionally, it supports post-generation editing of materials.
For more details, visit the [project page](https://gvecchio.com/matfuse/) or read the full paper on [arXiv](https://arxiv.org/abs/2308.11408).
## 🧑💻 Usage
### 💿 Installation
1. Clone the repository:
```bash
git clone https://github.com/giuvecchio/matfuse-sd.git
cd matfuse-sd
```
2. Set up the environment:
```bash
# create environment (can use venv instead of conda)
conda create -n matfuse python==3.10.13
conda activate matfuse
# install required packages
pip install -r requirements.txt
```
3. Download the checkpoint.
### 🧪 Inference
To run inference on a trained model:
```bash
python src/gradio_app.py --ckpt <path/to/checkpoint.ckpt> --config src/configs/diffusion/<config.yaml>
```
## 📜 Citation
```bibtex
@inproceedings{vecchio2024matfuse,
author = {Vecchio, Giuseppe and Sortino, Renato and Palazzo, Simone and Spampinato, Concetto},
title = {MatFuse: Controllable Material Generation with Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {4429-4438}
}
```
## License
This project is licensed under the MIT License. |