Commit
·
a5bc641
1
Parent(s):
4697a57
First model version
Browse files
push.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Trainer
|
2 |
+
|
3 |
+
# Assuming your Trainer object is called 'trainer'
|
4 |
+
Trainer.push_to_hub(
|
5 |
+
"ranga-godhandaraman/avatar-generator-women", # Replace with your details
|
6 |
+
overwrite=True # Set overwrite to True to update existing version (optional)
|
7 |
+
)
|
8 |
+
|
trial1.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
8 |
+
|
9 |
+
# Load the model
|
10 |
+
model_id = "/home/gopinath28031995/yashwanth/projects/watermark_env/instruction-tuned-sd/woman-avatar-gen"
|
11 |
+
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
12 |
+
pipe.to("cuda")
|
13 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
14 |
+
|
15 |
+
# Function to download image from URL
|
16 |
+
def download_image(url):
|
17 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
18 |
+
# Handle image orientation
|
19 |
+
if hasattr(image, '_getexif'):
|
20 |
+
exif = image._getexif()
|
21 |
+
if exif is not None:
|
22 |
+
orientation = exif.get(0x0112)
|
23 |
+
if orientation is not None:
|
24 |
+
if orientation == 3:
|
25 |
+
image = image.rotate(180, expand=True)
|
26 |
+
elif orientation == 6:
|
27 |
+
image = image.rotate(270, expand=True)
|
28 |
+
elif orientation == 8:
|
29 |
+
image = image.rotate(90, expand=True)
|
30 |
+
image = image.convert("RGB")
|
31 |
+
return image
|
32 |
+
|
33 |
+
# Streamlit app
|
34 |
+
st.title("Instruct Pix2Pix Image Generation")
|
35 |
+
|
36 |
+
# Add drag and drop/upload image options
|
37 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
38 |
+
image_url = st.text_input("Enter image URL")
|
39 |
+
|
40 |
+
# Input prompt from user
|
41 |
+
prompt = st.text_input("Enter prompt", "Generate a fantasy version, retain hair and facial features, 8k")
|
42 |
+
|
43 |
+
# Input seed, steps, and configuration scales from the user
|
44 |
+
seed = st.number_input("Seed", value=42, step=1)
|
45 |
+
num_inference_steps = st.number_input("Number of Inference Steps", value=300, step=10, min_value=0)
|
46 |
+
text_cfg_scale = st.number_input("Text CFG Scale", value=3.0, step=0.1, min_value=0.0)
|
47 |
+
image_cfg_scale = st.number_input("Image CFG Scale", value=7.5, step=0.1, min_value=0.0)
|
48 |
+
|
49 |
+
if uploaded_file is not None:
|
50 |
+
# Display the uploaded image
|
51 |
+
image = Image.open(uploaded_file)
|
52 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
53 |
+
elif image_url:
|
54 |
+
# Download and display image from URL
|
55 |
+
try:
|
56 |
+
image = download_image(image_url)
|
57 |
+
st.image(image, caption="Image from URL", use_column_width=True)
|
58 |
+
except Exception as e:
|
59 |
+
st.error("Error downloading image from URL. Please make sure the URL is correct.")
|
60 |
+
else:
|
61 |
+
# Use default image URL
|
62 |
+
url = "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"
|
63 |
+
st.write("Using default image.")
|
64 |
+
image = download_image(url)
|
65 |
+
|
66 |
+
# Generate image based on the user input
|
67 |
+
if st.button("Generate"):
|
68 |
+
# Generate image
|
69 |
+
generated_images = pipe(prompt,
|
70 |
+
image=image,
|
71 |
+
num_inference_steps=num_inference_steps,
|
72 |
+
image_cfg=image_cfg_scale,
|
73 |
+
text_cfg_scale=text_cfg_scale,
|
74 |
+
seed=seed)
|
75 |
+
st.image(generated_images[0], caption="Generated Image", use_column_width=True)
|