Upload model
Browse files- README.md +131 -0
- added_tokens.json +4 -0
- config.json +230 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: span-marker
|
3 |
+
tags:
|
4 |
+
- span-marker
|
5 |
+
- token-classification
|
6 |
+
- ner
|
7 |
+
- named-entity-recognition
|
8 |
+
- generated_from_span_marker_trainer
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
widget: []
|
14 |
+
pipeline_tag: token-classification
|
15 |
+
---
|
16 |
+
|
17 |
+
# SpanMarker
|
18 |
+
|
19 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
### Model Description
|
24 |
+
- **Model Type:** SpanMarker
|
25 |
+
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
|
26 |
+
- **Maximum Sequence Length:** 256 tokens
|
27 |
+
- **Maximum Entity Length:** 8 words
|
28 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
29 |
+
<!-- - **Language:** Unknown -->
|
30 |
+
<!-- - **License:** Unknown -->
|
31 |
+
|
32 |
+
### Model Sources
|
33 |
+
|
34 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
35 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
36 |
+
|
37 |
+
## Uses
|
38 |
+
|
39 |
+
### Direct Use for Inference
|
40 |
+
|
41 |
+
```python
|
42 |
+
from span_marker import SpanMarkerModel
|
43 |
+
|
44 |
+
# Download from the 🤗 Hub
|
45 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
46 |
+
# Run inference
|
47 |
+
entities = model.predict("None")
|
48 |
+
```
|
49 |
+
|
50 |
+
### Downstream Use
|
51 |
+
You can finetune this model on your own dataset.
|
52 |
+
|
53 |
+
<details><summary>Click to expand</summary>
|
54 |
+
|
55 |
+
```python
|
56 |
+
from span_marker import SpanMarkerModel, Trainer
|
57 |
+
|
58 |
+
# Download from the 🤗 Hub
|
59 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
60 |
+
|
61 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
62 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
63 |
+
|
64 |
+
# Initialize a Trainer using the pretrained model & dataset
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model,
|
67 |
+
train_dataset=dataset["train"],
|
68 |
+
eval_dataset=dataset["validation"],
|
69 |
+
)
|
70 |
+
trainer.train()
|
71 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
72 |
+
```
|
73 |
+
</details>
|
74 |
+
|
75 |
+
<!--
|
76 |
+
### Out-of-Scope Use
|
77 |
+
|
78 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
79 |
+
-->
|
80 |
+
|
81 |
+
<!--
|
82 |
+
## Bias, Risks and Limitations
|
83 |
+
|
84 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
85 |
+
-->
|
86 |
+
|
87 |
+
<!--
|
88 |
+
### Recommendations
|
89 |
+
|
90 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
91 |
+
-->
|
92 |
+
|
93 |
+
## Training Details
|
94 |
+
|
95 |
+
### Framework Versions
|
96 |
+
- Python: 3.10.8
|
97 |
+
- SpanMarker: 1.4.0
|
98 |
+
- Transformers: 4.28.0
|
99 |
+
- PyTorch: 1.13.1+cu117
|
100 |
+
- Datasets: 2.14.4
|
101 |
+
- Tokenizers: 0.13.3
|
102 |
+
|
103 |
+
## Citation
|
104 |
+
|
105 |
+
### BibTeX
|
106 |
+
```
|
107 |
+
@software{Aarsen_SpanMarker,
|
108 |
+
author = {Aarsen, Tom},
|
109 |
+
license = {Apache-2.0},
|
110 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
111 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Glossary
|
117 |
+
|
118 |
+
*Clearly define terms in order to be accessible across audiences.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
## Model Card Authors
|
123 |
+
|
124 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
## Model Card Contact
|
129 |
+
|
130 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
131 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 30523,
|
3 |
+
"<start>": 30522
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/controversies-ops/models/span-marker-bge-base-en-v1.5-fewnerd-fine-super/checkpoint-final",
|
3 |
+
"architectures": [
|
4 |
+
"SpanMarkerModel"
|
5 |
+
],
|
6 |
+
"encoder": {
|
7 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
8 |
+
"add_cross_attention": false,
|
9 |
+
"architectures": [
|
10 |
+
"BertModel"
|
11 |
+
],
|
12 |
+
"attention_probs_dropout_prob": 0.1,
|
13 |
+
"bad_words_ids": null,
|
14 |
+
"begin_suppress_tokens": null,
|
15 |
+
"bos_token_id": null,
|
16 |
+
"chunk_size_feed_forward": 0,
|
17 |
+
"classifier_dropout": null,
|
18 |
+
"cross_attention_hidden_size": null,
|
19 |
+
"decoder_start_token_id": null,
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"early_stopping": false,
|
23 |
+
"encoder_no_repeat_ngram_size": 0,
|
24 |
+
"eos_token_id": null,
|
25 |
+
"exponential_decay_length_penalty": null,
|
26 |
+
"finetuning_task": null,
|
27 |
+
"forced_bos_token_id": null,
|
28 |
+
"forced_eos_token_id": null,
|
29 |
+
"gradient_checkpointing": false,
|
30 |
+
"hidden_act": "gelu",
|
31 |
+
"hidden_dropout_prob": 0.1,
|
32 |
+
"hidden_size": 768,
|
33 |
+
"id2label": {
|
34 |
+
"0": "O",
|
35 |
+
"1": "art-broadcastprogram",
|
36 |
+
"2": "art-film",
|
37 |
+
"3": "art-music",
|
38 |
+
"4": "art-other",
|
39 |
+
"5": "art-painting",
|
40 |
+
"6": "art-writtenart",
|
41 |
+
"7": "building-airport",
|
42 |
+
"8": "building-hospital",
|
43 |
+
"9": "building-hotel",
|
44 |
+
"10": "building-library",
|
45 |
+
"11": "building-other",
|
46 |
+
"12": "building-restaurant",
|
47 |
+
"13": "building-sportsfacility",
|
48 |
+
"14": "building-theater",
|
49 |
+
"15": "event-attack/battle/war/militaryconflict",
|
50 |
+
"16": "event-disaster",
|
51 |
+
"17": "event-election",
|
52 |
+
"18": "event-other",
|
53 |
+
"19": "event-protest",
|
54 |
+
"20": "event-sportsevent",
|
55 |
+
"21": "location-GPE",
|
56 |
+
"22": "location-bodiesofwater",
|
57 |
+
"23": "location-island",
|
58 |
+
"24": "location-mountain",
|
59 |
+
"25": "location-other",
|
60 |
+
"26": "location-park",
|
61 |
+
"27": "location-road/railway/highway/transit",
|
62 |
+
"28": "organization-company",
|
63 |
+
"29": "organization-education",
|
64 |
+
"30": "organization-government/governmentagency",
|
65 |
+
"31": "organization-media/newspaper",
|
66 |
+
"32": "organization-other",
|
67 |
+
"33": "organization-politicalparty",
|
68 |
+
"34": "organization-religion",
|
69 |
+
"35": "organization-showorganization",
|
70 |
+
"36": "organization-sportsleague",
|
71 |
+
"37": "organization-sportsteam",
|
72 |
+
"38": "other-astronomything",
|
73 |
+
"39": "other-award",
|
74 |
+
"40": "other-biologything",
|
75 |
+
"41": "other-chemicalthing",
|
76 |
+
"42": "other-currency",
|
77 |
+
"43": "other-disease",
|
78 |
+
"44": "other-educationaldegree",
|
79 |
+
"45": "other-god",
|
80 |
+
"46": "other-language",
|
81 |
+
"47": "other-law",
|
82 |
+
"48": "other-livingthing",
|
83 |
+
"49": "other-medical",
|
84 |
+
"50": "person-actor",
|
85 |
+
"51": "person-artist/author",
|
86 |
+
"52": "person-athlete",
|
87 |
+
"53": "person-director",
|
88 |
+
"54": "person-other",
|
89 |
+
"55": "person-politician",
|
90 |
+
"56": "person-scholar",
|
91 |
+
"57": "person-soldier",
|
92 |
+
"58": "product-airplane",
|
93 |
+
"59": "product-car",
|
94 |
+
"60": "product-food",
|
95 |
+
"61": "product-game",
|
96 |
+
"62": "product-other",
|
97 |
+
"63": "product-ship",
|
98 |
+
"64": "product-software",
|
99 |
+
"65": "product-train",
|
100 |
+
"66": "product-weapon"
|
101 |
+
},
|
102 |
+
"initializer_range": 0.02,
|
103 |
+
"intermediate_size": 3072,
|
104 |
+
"is_decoder": false,
|
105 |
+
"is_encoder_decoder": false,
|
106 |
+
"label2id": {
|
107 |
+
"O": 0,
|
108 |
+
"art-broadcastprogram": 1,
|
109 |
+
"art-film": 2,
|
110 |
+
"art-music": 3,
|
111 |
+
"art-other": 4,
|
112 |
+
"art-painting": 5,
|
113 |
+
"art-writtenart": 6,
|
114 |
+
"building-airport": 7,
|
115 |
+
"building-hospital": 8,
|
116 |
+
"building-hotel": 9,
|
117 |
+
"building-library": 10,
|
118 |
+
"building-other": 11,
|
119 |
+
"building-restaurant": 12,
|
120 |
+
"building-sportsfacility": 13,
|
121 |
+
"building-theater": 14,
|
122 |
+
"event-attack/battle/war/militaryconflict": 15,
|
123 |
+
"event-disaster": 16,
|
124 |
+
"event-election": 17,
|
125 |
+
"event-other": 18,
|
126 |
+
"event-protest": 19,
|
127 |
+
"event-sportsevent": 20,
|
128 |
+
"location-GPE": 21,
|
129 |
+
"location-bodiesofwater": 22,
|
130 |
+
"location-island": 23,
|
131 |
+
"location-mountain": 24,
|
132 |
+
"location-other": 25,
|
133 |
+
"location-park": 26,
|
134 |
+
"location-road/railway/highway/transit": 27,
|
135 |
+
"organization-company": 28,
|
136 |
+
"organization-education": 29,
|
137 |
+
"organization-government/governmentagency": 30,
|
138 |
+
"organization-media/newspaper": 31,
|
139 |
+
"organization-other": 32,
|
140 |
+
"organization-politicalparty": 33,
|
141 |
+
"organization-religion": 34,
|
142 |
+
"organization-showorganization": 35,
|
143 |
+
"organization-sportsleague": 36,
|
144 |
+
"organization-sportsteam": 37,
|
145 |
+
"other-astronomything": 38,
|
146 |
+
"other-award": 39,
|
147 |
+
"other-biologything": 40,
|
148 |
+
"other-chemicalthing": 41,
|
149 |
+
"other-currency": 42,
|
150 |
+
"other-disease": 43,
|
151 |
+
"other-educationaldegree": 44,
|
152 |
+
"other-god": 45,
|
153 |
+
"other-language": 46,
|
154 |
+
"other-law": 47,
|
155 |
+
"other-livingthing": 48,
|
156 |
+
"other-medical": 49,
|
157 |
+
"person-actor": 50,
|
158 |
+
"person-artist/author": 51,
|
159 |
+
"person-athlete": 52,
|
160 |
+
"person-director": 53,
|
161 |
+
"person-other": 54,
|
162 |
+
"person-politician": 55,
|
163 |
+
"person-scholar": 56,
|
164 |
+
"person-soldier": 57,
|
165 |
+
"product-airplane": 58,
|
166 |
+
"product-car": 59,
|
167 |
+
"product-food": 60,
|
168 |
+
"product-game": 61,
|
169 |
+
"product-other": 62,
|
170 |
+
"product-ship": 63,
|
171 |
+
"product-software": 64,
|
172 |
+
"product-train": 65,
|
173 |
+
"product-weapon": 66
|
174 |
+
},
|
175 |
+
"layer_norm_eps": 1e-12,
|
176 |
+
"length_penalty": 1.0,
|
177 |
+
"max_length": 20,
|
178 |
+
"max_position_embeddings": 512,
|
179 |
+
"min_length": 0,
|
180 |
+
"model_type": "bert",
|
181 |
+
"no_repeat_ngram_size": 0,
|
182 |
+
"num_attention_heads": 12,
|
183 |
+
"num_beam_groups": 1,
|
184 |
+
"num_beams": 1,
|
185 |
+
"num_hidden_layers": 12,
|
186 |
+
"num_return_sequences": 1,
|
187 |
+
"output_attentions": false,
|
188 |
+
"output_hidden_states": false,
|
189 |
+
"output_scores": false,
|
190 |
+
"pad_token_id": 0,
|
191 |
+
"position_embedding_type": "absolute",
|
192 |
+
"prefix": null,
|
193 |
+
"problem_type": null,
|
194 |
+
"pruned_heads": {},
|
195 |
+
"remove_invalid_values": false,
|
196 |
+
"repetition_penalty": 1.0,
|
197 |
+
"return_dict": true,
|
198 |
+
"return_dict_in_generate": false,
|
199 |
+
"sep_token_id": null,
|
200 |
+
"suppress_tokens": null,
|
201 |
+
"task_specific_params": null,
|
202 |
+
"temperature": 1.0,
|
203 |
+
"tf_legacy_loss": false,
|
204 |
+
"tie_encoder_decoder": false,
|
205 |
+
"tie_word_embeddings": true,
|
206 |
+
"tokenizer_class": null,
|
207 |
+
"top_k": 50,
|
208 |
+
"top_p": 1.0,
|
209 |
+
"torch_dtype": "float32",
|
210 |
+
"torchscript": false,
|
211 |
+
"transformers_version": "4.28.0",
|
212 |
+
"type_vocab_size": 2,
|
213 |
+
"typical_p": 1.0,
|
214 |
+
"use_bfloat16": false,
|
215 |
+
"use_cache": true,
|
216 |
+
"vocab_size": 30524
|
217 |
+
},
|
218 |
+
"entity_max_length": 8,
|
219 |
+
"marker_max_length": 128,
|
220 |
+
"max_next_context": null,
|
221 |
+
"max_prev_context": null,
|
222 |
+
"model_max_length": 256,
|
223 |
+
"model_max_length_default": 512,
|
224 |
+
"model_type": "span-marker",
|
225 |
+
"span_marker_version": "1.4.0",
|
226 |
+
"torch_dtype": "float32",
|
227 |
+
"trained_with_document_context": false,
|
228 |
+
"transformers_version": "4.28.0",
|
229 |
+
"vocab_size": 30524
|
230 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:471271432b303eac852d64efd05b3a07277eefce5970dc25e3f2f893f772c79f
|
3 |
+
size 438417589
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_basic_tokenize": true,
|
6 |
+
"do_lower_case": true,
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"model_max_length": 512,
|
9 |
+
"never_split": null,
|
10 |
+
"pad_token": "[PAD]",
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|