--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer model-index: - name: results_llama_1b_small results: [] --- # results_llama_1b_small This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co./meta-llama/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3753 | 0.1431 | 1000 | 1.3197 | | 1.2734 | 0.2862 | 2000 | 1.3018 | | 1.2748 | 0.4292 | 3000 | 1.2926 | | 1.3498 | 0.5723 | 4000 | 1.2866 | | 1.1796 | 0.7154 | 5000 | 1.2825 | | 1.28 | 0.8585 | 6000 | 1.2799 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 2.17.0 - Tokenizers 0.21.0