--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results_fine_tune_llama8b_finetuned_original_careful results: [] --- # results_fine_tune_llama8b_finetuned_original_careful This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co./bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0601 - Accuracy: 0.9926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0178 | 2.4510 | 500 | 0.1058 | 0.9890 | | 0.0243 | 4.9020 | 1000 | 0.0601 | 0.9926 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 2.17.0 - Tokenizers 0.21.0