File size: 3,234 Bytes
99067b4 add2a1f 99067b4 add2a1f 99067b4 add2a1f 99067b4 add2a1f 99067b4 3f009d9 99067b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
language:
- it
license: apache-2.0
tags:
- italian
- sequence-to-sequence
- style-transfer
- formality-style-transfer
datasets:
- yahoo/xformal_it
widget:
- text: "Questa performance è a dir poco spiacevole."
- text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata."
- text: "Questa visione mi procura una goduria indescrivibile."
- text: "qualora ciò possa interessarti, ti pregherei di contattarmi."
metrics:
- rouge
- bertscore
model-index:
- name: mt5-base-formal-to-informal
results:
- task:
type: formality-style-transfer
name: "Formal-to-informal Style Transfer"
dataset:
type: xformal_it
name: "XFORMAL (Italian Subset)"
metrics:
- type: rouge1
value: 0.653
name: "Avg. Test Rouge1"
- type: rouge2
value: 0.449
name: "Avg. Test Rouge2"
- type: rougeL
value: 0.632
name: "Avg. Test RougeL"
- type: bertscore
value: 0.667
name: "Avg. Test BERTScore"
args:
- model_type: "dbmdz/bert-base-italian-xxl-uncased"
- lang: "it"
- num_layers: 10
- rescale_with_baseline: True
- baseline_path: "bertscore_baseline_ita.tsv"
co2_eq_emissions:
emissions: "40g"
source: "Google Cloud Platform Carbon Footprint"
training_type: "fine-tuning"
geographical_location: "Eemshaven, Netherlands, Europe"
hardware_used: "1 TPU v3-8 VM"
---
# mT5 Base for Formal-to-informal Style Transfer 🤗
This repository contains the checkpoint for the [mT5 Base](https://huggingface.co./google/mt5-base) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io).
A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.
## Using the model
Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:
```python
from transformers import pipelines
f2i = pipeline("text2text-generation", model='it5/mt5-base-formal-to-informal')
f2i("Vi ringrazio infinitamente per vostra disponibilità")
>>> [{"generated_text": "e grazie per la vostra disponibilità!"}]
```
or loaded using autoclasses:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-formal-to-informal")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-formal-to-informal")
```
If you use this model in your research, please cite our work as:
```bibtex
@article{sarti-nissim-2022-it5,
title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
author={Sarti, Gabriele and Nissim, Malvina},
journal={ArXiv preprint TBD},
url={TBD},
year={2022}
}
``` |