File size: 3,286 Bytes
35e8c7a
 
 
b67b127
35e8c7a
 
b67b127
 
35e8c7a
b67b127
 
35e8c7a
 
 
 
 
 
 
b67b127
35e8c7a
b67b127
35e8c7a
 
 
b67b127
35e8c7a
 
b67b127
35e8c7a
 
97a07d0
b67b127
 
97a07d0
b67b127
 
97a07d0
b67b127
 
97a07d0
b67b127
 
5864028
 
 
 
 
b67b127
 
 
 
 
 
35e8c7a
 
b67b127
 
7d0c28d
b67b127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0c28d
b67b127
7d0c28d
 
 
 
b67b127
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- it
license: apache-2.0
tags:
- italian
- sequence-to-sequence
- style-transfer
- formality-style-transfer
datasets:
- yahoo/xformal_it
widget:
- text: "Questa performance è a dir poco spiacevole."
- text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata."
- text: "Questa visione mi procura una goduria indescrivibile."
- text: "qualora ciò possa interessarti, ti pregherei di contattarmi."
metrics:
- rouge
- bertscore
model-index:
- name: it5-base-formal-to-informal
  results:
  - task: 
      type: formality-style-transfer
      name: "Formal-to-informal Style Transfer"
    dataset:
      type: xformal_it
      name: "XFORMAL (Italian Subset)"
    metrics:
      - type: rouge1
        value: 0.652
        name: "Avg. Test Rouge1"
      - type: rouge2
        value: 0.446
        name: "Avg. Test Rouge2"
      - type: rougeL
        value: 0.632
        name: "Avg. Test RougeL"
      - type: bertscore
        value: 0.665
        name: "Avg. Test BERTScore"
        args:
          - model_type: "dbmdz/bert-base-italian-xxl-uncased"
          - lang: "it"
          - num_layers: 10
          - rescale_with_baseline: True
          - baseline_path: "bertscore_baseline_ita.tsv"
co2_eq_emissions:
      emissions: "17g"
      source: "Google Cloud Platform Carbon Footprint"
      training_type: "fine-tuning"
      geographical_location: "Eemshaven, Netherlands, Europe"
      hardware_used: "1 TPU v3-8 VM"
---

# IT5 Base for Formal-to-informal Style Transfer 🤗

This repository contains the checkpoint for the [IT5 Base](https://huggingface.co./gsarti/it5-base) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). 

A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.

## Using the model

Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:

```python
from transformers import pipelines

f2i = pipeline("text2text-generation", model='it5/it5-base-formal-to-informal')
f2i("Vi ringrazio infinitamente per vostra disponibilità")
>>> [{"generated_text": "e grazie per la vostra disponibilità!"}]
```

or loaded using autoclasses:

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("it5/it5-base-formal-to-informal")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-base-formal-to-informal")
```

If you use this model in your research, please cite our work as:

```bibtex
@article{sarti-nissim-2022-it5,
    title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
    author={Sarti, Gabriele and Nissim, Malvina},
    journal={ArXiv preprint 2203.03759},
    url={https://arxiv.org/abs/2203.03759},
    year={2022},
	month={mar}
}
```