File size: 10,808 Bytes
f413716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c82b70
 
f413716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d9e395
f413716
 
 
 
 
 
 
 
4d9e395
f413716
 
 
 
 
 
 
 
5c82b70
f413716
 
 
 
 
 
 
 
01d1358
f413716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'gh logo, on four cans, black background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
- text: 'gh logo, green background, on a bottle and a can'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_2_0.png
- text: 'gh logo, on a bottle and 4 cans, white background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_3_0.png
- text: 'gh logo, on a bottle and two cans, red orange background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_4_0.png
- text: 'gh cans, yellow background, brown red can, served with other drinks'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_5_0.png
- text: 'gh cans, white background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_6_0.png
- text: 'gh cans, in a bucket of ice, white background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_7_0.png
- text: 'gh cans, being held, out of focus background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_8_0.png
- text: 'dct desert rally racing background, driving a Ducati bike, out of focus shrubbery'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_9_0.png
- text: 'dct desert rally racing background, driving a Ducati bike, splashing water'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_10_0.png
- text: 'dct desert rally racing background, driving a Ducati bike, rider in a white motocross outfit, dust cloud'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_11_0.png
- text: 'dct desert rally racing background, driving a Ducati bike, view of a lake with shrubs and trees in the background, other riders and spectators'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_12_0.png
- text: 'anytylrjy woman, wearing a neckless and an opaque brown dress standing on the red carpet, hair done up, front view'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_13_0.png
- text: 'anytylrjy woman, putting on lipstick in front of a mirror, wearing a flowing white dress or bathrobe, looking in multiple mirrors, makeup on table'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_14_0.png
- text: 'anytylrjy woman, holding a makeup kit, staring directly at camera, brown background, wearing a ring and eggshell dress'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_15_0.png
- text: 'anytylrjy woman, wearing an elegant emerald green dress, wearing earrings and a necklace, white background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_16_0.png
- text: 'mrtnprr style'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_17_0.png
- text: 'mrtnprr style'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_18_0.png
- text: 'mrtnprr style'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_19_0.png
- text: 'mrtnprr style'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_20_0.png
- text: 'a photo of a daisy'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_21_0.png
---

# growwithdaisy/ghxdct_style_focus_20241113_125207

This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co./black-forest-labs/FLUX.1-dev).


The main validation prompt used during training was:



```
a photo of a daisy
```

## Validation settings
- CFG: `3.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `69`
- Resolution: `1024x1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 44
- Training steps: 4000
- Learning rate: 5e-06
- Max grad norm: 2.0
- Effective batch size: 8
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 8
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_value=1.0'])
- Rescaled betas zero SNR: False
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Precision: Pure BF16
- Quantised: No
- Xformers: Not used
- LyCORIS Config:
```json
{
    "algo": "lokr",
    "multiplier": 1,
    "linear_dim": 1000000,
    "linear_alpha": 1,
    "factor": 16,
    "init_lokr_norm": 0.001,
    "apply_preset": {
        "target_module": [
            "FluxTransformerBlock",
            "FluxSingleTransformerBlock"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}
```

## Datasets

### gh_logo-512
- Repeats: 0
- Total number of images: ~32
- Total number of aspect buckets: 4
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### gh_cans-512
- Repeats: 0
- Total number of images: ~56
- Total number of aspect buckets: 6
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### gh_cans-768
- Repeats: 0
- Total number of images: ~40
- Total number of aspect buckets: 5
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### gh_cans-1024
- Repeats: 0
- Total number of images: ~16
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### dct_desert_rally_racing_background-512
- Repeats: 0
- Total number of images: ~56
- Total number of aspect buckets: 5
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### dct_desert_rally_racing_background-768
- Repeats: 0
- Total number of images: ~56
- Total number of aspect buckets: 5
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### dct_desert_rally_racing_background-1024
- Repeats: 0
- Total number of images: ~48
- Total number of aspect buckets: 3
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### anytylrjy_woman-512
- Repeats: 0
- Total number of images: ~64
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### anytylrjy_woman-768
- Repeats: 0
- Total number of images: ~64
- Total number of aspect buckets: 7
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### anytylrjy_woman-1024
- Repeats: 0
- Total number of images: ~72
- Total number of aspect buckets: 8
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### mrtnprr_style-512
- Repeats: 1
- Total number of images: ~48
- Total number of aspect buckets: 6
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### mrtnprr_style-768
- Repeats: 1
- Total number of images: ~40
- Total number of aspect buckets: 5
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### mrtnprr_style-1024
- Repeats: 1
- Total number of images: ~16
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'playerzer0x/growwithdaisy/ghxdct_style_focus_20241113_125207'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "a photo of a daisy"


## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
```