from typing import Dict, List, Any from transformers import pipeline from PIL import Image import requests from transformers import AutoModelForCausalLM, LlamaTokenizer import torch from accelerate import ( init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch, ) class EndpointHandler: def __init__(self, path=""): # Preload all the elements you are going to need at inference. # self.pipeline = pipeline( # "text-generation", model="THUDM/cogvlm-chat-hf", trust_remote_code=True # ) # self.model = AutoModelForCausalLM.from_pretrained( # "THUDM/cogvlm-chat-hf", trust_remote_code=True # ) self.tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-7b-v1.5") # self.model = ( # AutoModelForCausalLM.from_pretrained( # "THUDM/cogvlm-chat-hf", # torch_dtype=torch.bfloat16, # low_cpu_mem_usage=True, # trust_remote_code=True, # ) # .to("cuda") # .eval() # ) # DISTRIBUTED GPUS with init_empty_weights(): self.model = AutoModelForCausalLM.from_pretrained( "THUDM/cogvlm-chat-hf", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, ) device_map = infer_auto_device_map( self.model, max_memory={ 0: "16GiB", 1: "16GiB", 2: "16GiB", 3: "16GiB", "cpu": "180GiB", }, no_split_module_classes=["CogVLMDecoderLayer"], ) self.model = load_checkpoint_and_dispatch( self.model, "~/.cache/huggingface/modules/transformers_modules/THUDM/cogvlm-chat-hf/8abca878c4257412c4c38eeafaed3fe27a036730", # typical, '~/.cache/huggingface/hub/models--THUDM--cogvlm-chat-hf/snapshots/balabala' # "/home/ec2-user/.cache/huggingface/hub/models--THUDM--cogvlm-chat-hf/snapshots/8abca878c4257412c4c38eeafaed3fe27a036730", # typical, '~/.cache/huggingface/hub/models--THUDM--cogvlm-chat-hf/snapshots/balabala' device_map=device_map, no_split_module_classes=["CogVLMDecoderLayer"], ) self.model = self.model.eval() ## DISTRIBUTED GPUS def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ query = data["query"] img_uri = data["img_uri"] image = Image.open( requests.get( img_uri, stream=True, ).raw ).convert("RGB") inputs = self.model.build_conversation_input_ids( self.tokenizer, query=query, history=[], images=[image], template_version="vqa", ) # vqa mode inputs = { "input_ids": inputs["input_ids"].unsqueeze(0).to("cuda"), "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to("cuda"), "attention_mask": inputs["attention_mask"].unsqueeze(0).to("cuda"), "images": [[inputs["images"][0].to("cuda").to(torch.bfloat16)]], } gen_kwargs = {"max_length": 2048, "do_sample": False} with torch.no_grad(): outputs = self.model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs["input_ids"].shape[1] :] response = self.tokenizer.decode(outputs[0]) return response # query = "How many houses are there in this cartoon?" # image = Image.open( # requests.get( # "https://github.com/THUDM/CogVLM/blob/main/examples/3.jpg?raw=true", stream=True # ).raw # ).convert("RGB") # inputs = model.build_conversation_input_ids( # tokenizer, query=query, history=[], images=[image], template_version="vqa" # ) # vqa mode # inputs = { # "input_ids": inputs["input_ids"].unsqueeze(0).to("cuda"), # "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to("cuda"), # "attention_mask": inputs["attention_mask"].unsqueeze(0).to("cuda"), # "images": [[inputs["images"][0].to("cuda").to(torch.bfloat16)]], # } # gen_kwargs = {"max_length": 2048, "do_sample": False} # with torch.no_grad(): # outputs = model.generate(**inputs, **gen_kwargs) # outputs = outputs[:, inputs["input_ids"].shape[1] :] # print(tokenizer.decode(outputs[0]))